Agreeing to Disagree: Translating Representations to Uncover a
Unified Representation for Social Robot Actions

Saad Elbeleidy !, Jason R. Wilson >

IPeerbots
Franklin & Marshall College
saad @peerbots.org, jrw @fandm.edu

Abstract

Researchers and designers of social robots often approach
robot control system design from a single perspective; such as
designing autonomous robots, teleoperated robots, or robots
programmed by an end-user. While each design approach
presents a tradeoff between some advantages and limitations,
there is an opportunity to integrate these approaches where
people benefit from the best-fit approach for their use case.
In this work, we propose integrating these seemingly distinct
robot control approaches to uncover a common data represen-
tation of social actions defining social expression by a robot.
We demonstrate the value of integrating an authoring system,
teleoperation interface, and robot planning system by inte-
grating instances of these systems for robot storytelling. By
relying on an integrated system, domain experts can define
behaviors through end-user interfaces that teleoperators and
autonomous robot programmers can use directly thus provid-
ing a cohesive expert-driven robot system.

Introduction

Researchers and designers of social robots, or for the pur-
pose of this work: robots that perform social expressions
while interacting with people, make several choices in the
design of these robots. Importantly, researchers must decide
on how they control their robots, and they often focus on
a single control mechanism. Since control approaches have
historically been disconnected, researchers often make a sin-
gle selection that results in a limiting setup that unneces-
sarily locks researchers into a collection of consequences
related to their choice. In this paper, we demonstrate how
different control mechanisms can be integrated so that re-
searchers can rely on the appropriate tool based on their use
case, and we use this integration to work towards defining a
unified representation that can ease future integrations. Ex-
amining the tools used by different types of researchers and
designers, we identify a robot’s action as the most common
concept and thus a necessary first step in defining a unified
representation.

We demonstrate this integration through a robot story-
telling use case, a common application for child-robot in-
teraction since children can find robots engaging (Hubbard
etal. 2021; Sun et al. 2017; Ligthart, Neerincx, and Hindriks

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2020). Storytelling is a common activity that children find
entertaining, enjoyable and potentially educational (Barton
1986). As we will discuss, robot storytelling is a task that
can easily demonstrate how a single choice in robot control
can result in restrictive consequences.

Design Approaches for Robot Control

In terms of how they control robots, researchers’ perspec-
tives often lead to a single choice of (1) autonomous pro-
gramming (2) teleoperation or Wizard of Oz (WoZ), or (3)
End-User Development. Each of these approaches has clear
advantages and limitations.

Autonomous Programming

Developers of autonomous robots often rely on planning lan-
guages or behavior trees to describe, control, and execute
robot actions. Behavior trees (BTs) handle complex robot
controls using modularity, hierarchy, and feedback (Ogren
and Sprague 2022). Similarly, hierarchical task networks
(HTNs) use modular components organized in a hierarchical
structure to plan out a robot’s actions. The feedback mech-
anisms in BTs provide capabilities for execution, whereas
planning approaches with HTNs often rely on a separate
component for executing the plan. The hierarchical struc-
tures supported in these approaches provide programmers
with an interface for specifying high-level goals or tasks to
be accomplished. Components at the leaf level in BTs and
HTNs are responsible for the specific actions the robot is to
perform.

To manage the execution of actions on a robot platform,
actionLib provides a common interface across robots sup-
porting ROS. ROS actionlib works as a client-server archi-
tecture that focuses on sending a goal from the client to the
server, which is responsible for managing the execution of
the action on the robot platform (Santos et al. 2017). Since
actionlib simply provides an interface and syntax for com-
municating actions, there is no commitment or constraints
on how the action is handled, allowing developers autonomy
in their implementation.

Autonomous robot programmers are able to rely on these
structure to define limited scope interactions to be delivered
by robots. Interactions such as storytelling can be highly
successful examples of using an autonomous robot since the

task is of fairly limited scope and simple fallback mecha-
nisms can be in place to ensure children’s safety (Cagiltay
etal. 2022). As children’s expectations of the robots increase
and robots’ application scope increases, there will be a need
for more human supervision (Elbeleidy, Mott, and Williams
2022). This could potentially be accomplished through in-
terfaces for robot teleoperation.

Teleoperation

Teleoperation interfaces are commonly used as simple pro-
toyping tools to verify the value or use of a robot. Re-
searchers commonly use Wizard of Oz (Riek 2012) as a
method to evaluate robots or their impact on interlocutors.
However, in highly critical or sensitive scenarios, teleoper-
ation can be even more appropriate than autonomous inter-
action and ought to be considered in its own right (Beer,
Fisk, and Rogers 2014). By choosing to teleoperate robots,
researchers must design a teleoperation interface and design
for the teleoperators who use that interface.

Teleoperation interfaces rely on data representations that
represent the robot’s behavior as well as the user interface el-
ements that ease teleoperation (Adamides et al. 2014). These
interfaces must be designed at an appropriate level of ab-
straction to communicate to teleoperators all the possibil-
ities for controlling the robot without overwhelming them
and substantially increasing their cognitive load.

Teleoperation interfaces could be useful in controlling
robots for storytelling. However, teleoperation interfaces
alone are not sufficient. Teleoperation interfaces can rely
on a low level of abstraction, allowing teleoperators precise
control over the robot’s actions but requiring preparation
ahead of time or significant cognitive load during teleoper-
ation (Elbeleidy et al. 2023). Previous research has found
that a sole reliance on teleoperation leads to invisible la-
bor performed by teleoperators to author content ahead of
time (Elbeleidy, Reddy, and Williams 2023). Additionally,
when domain specialists are involved in defining robot be-
haviors, they often struggle to use existing tools that relate
to robotics (Elbeleidy et al. 2022).

End-User Development

End-User Development (EUD) is intended to specifically
address the barrier in robotics-specific knowledge. End-User
Development tools rely on simple interfaces, such as visual
programming, to allow non-roboticists the ability to pro-
gram robots (Coronado et al. 2020; Ajaykumar, Steele, and
Huang 2021). End-User Development can encompass robot
programming but goes beyond just that to include simply au-
thoring the domain-specific knowledge for the robot. EUD
interfaces can take on different approaches to simplifying
behavior definition such as by using familiar metaphors or
interfaces or using a high level abstraction to define a robot’s
actions. For example, the Polaris system allows authors to
define behaviors by defining their desired goals for the robot
to perform (Porfirio, Roberts, and Hiatt 2024).

While End-User Development tools can provide several
advantages by interfacing with non-experts, they may re-
quire complex development efforts to support their creation.

Robot systems ought to effectively integrate behavior au-
thoring, robot teleoperation, and autonomous capabilities of
robots in interfaces designed for various roles: author, tele-
operator and supervisor, and expertise areas: domain spe-
cialists, roboticists.

Common Representation

Our effort to integrate tools that follow different design ap-
proaches reveals some of the similarities and differences in
what the tools need to represent. Autonomous programming
needs to be able to represent a command given to a robot,
though a variety of terminology is used. Once that is deter-
mined, these tools need to be able to represent sequences of
operations, the coordination between operations, and condi-
tions for an operation. In contrast, teleoperation interfaces
often rely on low level controls to move or modify individ-
ual parts of a robot, and the representations necessary are
directly connected to the parts of the robot that can change.
Additionally, teleoperation interfaces need to associate the
robot controls to user interface elements for buttons, group-
ings, and labels. The teleoperation interface we use in this
work has some support for low level controls but also pro-
vides buttons with a predefined grouping of speech, emo-
tion, and color changes. End-User Development tools try to
provide simplified and abstract descriptions of how to con-
trol the robot, but they also need to connect this to more
concrete and perhaps more complex definition of the spe-
cific commands necessary to operate the robot.

Based on this knowledge, we propose that a shared rep-
resentation that would support tool integration starts with
a common need: representing what the robot is fo do. Of-
ten there is a need to represent the robot’s “doing” at vari-
ous levels of abstraction, resulting in a variety of terms like
“behavior”, “action”, “goal”, and “task”. We demonstrate
that a common representation of an “action” allows an in-
tegration of tools for teleoperation, content authoring, and
semi-automated authoring support. We demonstrate the effi-
cacy of this system by applying it to robot storytelling using
the Peerbots Platform ! for content authoring and teleoper-
ation, and the sarBehaviorGen (Wilson and Yang 2024) for
autonomous generation of social robot behaviors.

Examining the representations used by these tools (see
Figure 1) makes clear that there is no present unified repre-
sentation that may be used to integrate the tools. Instead we
identify the basis for a common representation is an action,
defined as a fine-grained instruction to the robot. Defining a
common action representation is a necessary step in integrat-
ing multiple components whether by sharing a unified rep-
resentation or translating between representations. In order
to translate across representations, we first need to identify
the common element to be translated.

In a larger unified representation or in translating be-
tween representations most tools will ignore various parts
of the representation, as they are not relevant to the func-
tionality of that tool. For example, the teleoperation inter-
face defines values that are not informative to the behav-
ior generator. The teleoperation interface wraps actions with

"https://peerbots.org

action script intent
" d | action list
p p | . —_—
| button H details I— aCt|0n 4{ metadata
[label |
say text set emotion

) ‘ i‘?‘ emotion ‘ method

| story }—4[&|
|_1 Peerbots Authering and Teleoperation . sarBehaviorGen ‘_‘ Shared representations

Figure 1: An action is the central representation across each
of the tools. Shown here are the relationship between an ac-
tion and the other representations used by each tool.

interface-specific presentation, hierarchical groupings, and
user-specified metadata. The behavior generator requires in-
tents defined and associated with each action as a way to
integrate groups of actions together. Each approach provides
its own abstractions on top of the base action that the various
tools share. Additionally, each tool makes a choice in how to
define synchronous behaviors or to perform them simultane-
ously. This decision heavily informs the representation cho-
sen by the robot tool designers and resulted in our decision
to translate rather than unify a representation. In fact, relying
on different representations that can be translated between
each other could result in even more flexibility and integra-
tion across different tools. This all begins with a common
understanding of a robot action.

Tools & Representations

In this section, we describe each tool used, its data repre-
sentation(s), target audience and level of abstraction of the
interaction with robots. A summary of each tool and the in-
put and output representations that it uses are presented in
Figure 2.

Autonomous Behavior Generation

A behavior generator allows a robotocist to specify a robot’s
behavior at an abstract level and have the behavior automat-

Behavior Generator Action Script

Button Teleoperation Interface Robot Behavior

String Authoring Interface Buttons

Figure 2: The data representations as input and output of
each tool.

ically executed on the robot. We use the sarBehaviorGener-
ator, which provides an API that takes a verbalization and an
intent, which are translated into an action script by a planner.
The action script can then be sent to a robot middleware for
execution. Alternatively, the action script may be returned
through the programming interface.

We define these terms in more detail as follows. An in-
tent provides a high-level description of the communicative
purpose for what the robot is saying (Yang et al. 2023). We
use four intents: (1) Inform communicates factual informa-
tion. (2) Inquire communicates a request for information.
(3) Instruct provides information about the task. (4) Social
uses social norms to facilitate a natural, positive, and smooth
interaction. An intent is a high-level abstraction specifying
the robot’s behavior, which the behavior generator translates
into a less abstract specification of the particular actions for
the robot to perform. The behavior generator uses a plan-
ner, which uses planning models that represent a sequence
of actions as a method. A method represents one approach
to executing a higher level task. The intent provided to the
behavior generator is given to the planner as a top-level task
to plan for. The resulting actions are defined in an action
script that contains of a list of actions.

An action script is a list of actions in the order that the
robot is to perform them. Each action includes the name of
the action, its arguments, and optional metadata. The meta-
data can include a trace of the reasoning that connects the
provided intent to the resulting action. An example of a por-
tion of the resulting actions script is the following.

Listing 1: Data representation of an action script.
{

"intent": "Inquire",
"description": "Example of Ingquire",
"actionList": [
{
"name": "LookInDirection",
"args": ["center"],
"metadata": {
"trace": [["claim-look-0"],
["claim-1look"],
"take-turn-default"],
"take-turn"],
"how-going"],
"inquire", "progress"]]

[
[
[
[

"name": "TiltHead",
"args": ["left", "small"],
"metadata": {

"trace": [["

tiltHeadandPausel"],
["tiltHeadandPause",
"left", "small"],
["how-going"],
["inquire", "progress"]]

Save To Account New Button Import Template Export Template

/ Example Template X Example Template | +

Edit Selected Button

Ok, what about a happy face?

Switch to Log Button

Who can show me a sad face That's sad

®
_®

Ok, what about a happy face?

That's happy litie

Ok, what about a happy face?

®
®

Thanks! Let's learn about colors! Light Blue

®
®

Green Red Purple

®
©)

Yellow Orange Grey

®

White

+ Add Button @ Bulk Author

@—®
®@

Blue Copy Title to Speech

Copy Speech to Title

®
® @

Pink Speech

Ok, what about a happy face?

®
®

Black Robot Color -
oe ® [

Label Color _
0000 o

Emotion
qoo;g};{bqpﬂ:

Save

Reorder Button

Backwards Forwards

Figure 3: The Teleoperation Interface. Left: An example of how buttons are presented to a teleoperator. Each button transmits a
social behavior to be expressed by the robot. Right: The button editing panel showing the button title, speech, robot color, label

color, and emotion.

The order of the actions is explicitly defined by the action
script and each action is assumed to run asynchronously.
This requires Pause actions to coordinate the timing of
speech and gestures but provides more flexibility for the
robot to express in a variety of ways simultaneously. This
choice is very distinct from the teleoperation interface’s ap-
proach described below.

Teleoperation

We use the Peerbots platform as the teleoperation inter-
face. The teleoperation interface provides a low level of
abstraction, allowing teleoperators with minimal technical
knowledge to directly control a robot’s social expression.
The interface (see Figure 3) contains tabs that allow tele-
operators to move between different collections of buttons
where each button initiates simultaneous behaviors upon se-
lection. Pauses are implicitly defined between behaviors by
the time it takes the teleoperator to perform a subsequent ac-
tion. Note this distinction relative to the behavior generator,
where pauses are explicitly specified.

To represent the data for these behaviors, the teleopera-
tion interface relies on a nested structure of collections con-
taining buttons which contain the behaviors. Each button se-
lection initiates multiple simultaneous behaviors at once: a
verbalization, a color, and an emotional expression. The rep-
resentation for a button contains the behaviors to initiate as
well as teleoperator-facing values such as the label color, and
metadata for logging purposes.

Listing 2: Data representation for a button.

"buttonID": {
"type": "The type of button: Message
or Log",
"labelColor": "The color of the
button",
"details": "The robot behavior",
"metadata": "Open ended metadata"

The robot behaviors (the details key in the button repre-
sentation) are represented as follows:

Listing 3: Data representation of behaviors sent to a robot.
"details": {

"title": "Title of the action",
"speech": "The text to verbalise",
"emotion": "The emotion to express",
"color": "The color to present”

Note the distinction between these two representations
since the teleoperation interface may contain additional in-
formation that is not sent to the robot such as information
about how to present the button to the teleoperator.

A collection or visually, a selected tab is represented as a
set of nodes and their organization where each node is a but-

ton. Button definitions are separate from their organization
structure with button identifiers as keys under a ’nodes” ob-
ject and their organization defined under a "hierarchy” key.

Listing 4: Data representation of a collection of buttons.

"buttons": "An object of buttonIDs and
their information",
"hierarchy": {
"root": "A list of the root order of
buttonIDs",
"buttonID": "A list of buttonIDs of
the descendents"

This data format allows the button collections to be eas-
ily represented as a graph which can be helpful for a variety
of user interface representations such as behavior trees and
to easily support features such as dragging and dropping to
reorder buttons. From the teleoperator’s perspective, button
collections are a useful abstraction that allows teleoperators
to organize behaviors that are similar, or commonly used to-
gether such as when expressed chronologically (Elbeleidy
et al. 2021).

One important capability of teleoperation interfaces is to
allow teleoperators to quickly edit robot behaviors. The tele-
operation interface contains a side panel that allows teleop-
erators to edit an individual button’s details, including both
how the button appears in the interface and the behaviors
the robot would perform when that button is selected. While
these editing capabiltiies are essential, they are not sufficient
for in depth authoring of content.

Authoring

Authoring interfaces allow authors to directly create a large
amount of robot behaviors for a particular task and think
about these tasks at a relevant level of abstraction. The au-
thoring interface as part of the Peerbots platform contains a
single text box, a submit button, and an option for the author
to select whether they create a new button collection or ap-
pend buttons to the currently selected collection. Upon sub-
mission, the authoring interface parses the provided string
of text and converts it into the representation used by the
teleoperation interface that is then presented as buttons.

The authoring interface allows authors to focus on the
verbalizations to express and author them all at once in a
distraction-free space. Authors need not consider the details
of emotion and color presentation of the robot and get to
focus on the dialogue of the interaction. However, this au-
thoring interface still requires authors to enter all the verbal-
izations they expect the robot to verbalize.

Integration: Semi-Automated Authoring

We recognize the potential for integrating the autonomous
behavior generator to support authors with working at a
higher level of abstraction and rely on the behavior gen-
erator for the detailed definitions of each behavior to per-
form. Thus, we integrate these modules and provide semi-
automated authoring capabilities. Rather than the behavior

Semi-Automated Authoring Interface

Behavior Generator

| oo |

Figure 4: The data representation input and output to the
semi-automated authoring interface including the ways in
which the representation transforms along the way.

generator requiring a robotics expert to provide input, we
integrate our existing authoring interface with the behavior
generator so a non-roboticist author can specify their desired
content. The data flow of the semi-automated authoring in-
terface is shown in Figure 4.

Following our integration, the previously mentioned au-
thoring interface’s user input is provided to an intermediate
component which passes appropriate information to the be-
havior generator. This component splits user-provided input
into distinct verbalizations (i.e., sentences) and infers how
each expression ought to be performed. The first part of this
inference is classifying each verbalization into one of the
previously mentioned intents. Using Claude Al, we prompt
it with each of the intent definitions and ask it to classify
each verbalization. The second part uses the behavior gen-
erator to produce an action script that details the specific
sequence of actions for the robot to perform based on the
provided intents and verbalizations. The authoring interface
then converts action scripts to the teleoperation interface’s
representation to be previewed to the user. This integration
is possible by translating the behavior generator outputs to
the teleoperation interface’s representation.

Application: Robot Storytelling

We use robot storytelling as an example use case that
demonstrates a data pipeline to communicate between au-
tonomous and teleoperation systems. An author can begin in
the authoring interface and enter the contents of the story.
Once submitted, the author is presented with two preview
visualizations. First, a table with the input broken up into
verbalizations with intent classifications for each. Second, a
table with the proposed robot behaviors that would be ex-
pressed while telling the story. Upon acceptance, the new
content is loaded in the teleoperation interface and authors
can edit it to their liking. An author with no robotics exper-
tise can now benefit from the capabilities of the autonomous
behavior generator which previously required some robotics
and programming knowledge. This is only possible thanks
to these modules being able to translate their representations
and arrive at a common understanding for their base actions.

Discussion
Unified Representation vs Translation Interfaces

We identified actions as the most essential common repre-
sentation across tools for teleoperation, end-user develop-

ment, and autonomous robots. However, the syntactic and
semantic representation of an action differed across these
tools. Given the differences in syntax and semantics around
one of the most essential representations, it is unclear how
to move forward towards a unified representation. Alterna-
tively, tool integration could rely on translation interfaces.
A remaining challenge in developing these interfaces is
understanding the different semantics of commonly used
terms like “action”. We see this in our integration of Peerbots
and the sarBehaviorGen. A behavior in the teleoperation in-
terface describes a small collection of effects produced by
different parts of the robot and are to be done nearly simul-
taneously. Conversely, the autonomous behavior generator’s
outputs actions that focus on a single effect (e.g., moving the
arm to point) and achieves synchronous effects by adding
pauses between otherwise simultaneous actions. The choice
in representing complex behaviors at once is especially im-
portant when autonomous robot perception is involved.

Semi-Autonomous Behavior

To integrate teleoperation interfaces, end-user development
interfaces, and autonomous programs for robots, we nar-
rowed our scope to the overlapping needs. Since percep-
tion is performed by the teleoperator when teleoperation is
used, we consequently deemed any data representations for
perception or integration with perception out of scope. This
choice was intentional as it allows us to think of representa-
tions for domain knowledge in a simpler state. However, we
ought to consider perception in the future in ways that can
enable semi-autonomous behavior where appropriate.

For semi-autonomous behavior, we consider two human-
in-the-loop cases: (1) teleoperator tells the robot to continue
autonomously, and (2) robot functioning autonomously de-
cides whether to continue or notify the teleoperator that
human intervention is needed. Achieving semi-autonomous
behavior will require integrating with an autonomous robot
architecture, many of which use goals and actions to specify
the robot’s behavior (e.g., (Lemaignan et al. 2017; Scheutz
et al. 2019)). The robot architecture is needed for perceiv-
ing the user and reasoning about how and when to proceed.
Assuming that the robot architecture can provide a goal of
communicating the next portion of the story, then our solu-
tion described above is able to assign an intent and generate
a plan for how the robot will communicate. Since sarBe-
haviorGen integrates into two social robot platforms (Wil-
son and Yang 2024), the plan can be automatically executed
with the provided robot middleware.

Conclusion

Across autonomous robots, teleoperation, and end-user de-
velopment for robots, we find different opinionated ap-
proaches to simplify robot control to the relevant audience.
However, there is a common need to specify and represent an
“action”, or more generally a description of what to tell the
robot to do. We demonstrated an example integration across
these systems and found that identifying these similarities
and differences is a critical step towards defining a shared
representation, or at least a shared understanding, that may
lead to better integration.

References

Adamides, G.; Christou, G.; Katsanos, C.; Xenos, M.; and
Hadzilacos, T. 2014. Usability guidelines for the design
of robot teleoperation: A taxonomy. IEEE Transactions on
human-machine systems, 45(2): 256-262.

Ajaykumar, G.; Steele, M.; and Huang, C.-M. 2021. A sur-
vey on end-user robot programming. ACM Computing Sur-
veys (CSUR), 54(8): 1-36.

Barton, B. 1986. Tell me another: Storytelling and reading
aloud at home, at school and in the community. ERIC.

Beer, J. M.; Fisk, A. D.; and Rogers, W. A. 2014. Toward
a framework for levels of robot autonomy in human-robot
interaction. J. Hum.-Robot Interact., 3(2): 74-99.

Cagiltay, B.; White, N. T.; Ibtasar, R.; Mutlu, B.; and
Michaelis, J. 2022. Understanding Factors that Shape Chil-
dren’s Long Term Engagement with an In-Home Learning
Companion Robot. In Proceedings of the 21st Annual ACM
Interaction Design and Children Conference, 362-373.

Coronado, E.; Mastrogiovanni, F.; Indurkhya, B.; and Ven-
ture, G. 2020. Visual programming environments for end-
user development of intelligent and social robots, a system-
atic review. Journal of Computer Languages, 58: 100970.
Elbeleidy, S.; Mott, T.; Liu, D.; Do, E.; Reddy, E.; and
Williams, T. 2023. Beyond the Session: Centering Teleop-
erators in Robot-Assisted Therapy Reveals the Bigger Pic-
ture. In Proceedings of the ACM Conference On Computer-
Supported Cooperative Work And Social Computing.

Elbeleidy, S.; Mott, T.; Liu, D.; and Williams, T. 2022. Prac-
tical Considerations for Deploying Robot Teleoperation in
Therapy and Telehealth. In 2022 31st IEEE International
Conference on Robot and Human Interactive Communica-
tion (RO-MAN), 977-984. IEEE.

Elbeleidy, S.; Mott, T.; and Williams, T. 2022. Practical,
Ethical, and Overlooked: Teleoperated Socially Assistive
Robots in the Quest for Autonomy. In Companion Pro-
ceedings of the 2022 ACM/IEEE International Conference
on Human-Robot Interaction (alt. HRI).

Elbeleidy, S.; Reddy, E.; and Williams, T. 2023. The Invis-
ible Labor of Authoring Dialogue for Teleoperated Socially
Assistive Robots. In IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN).
Elbeleidy, S.; Rosen, D.; Liu, D.; Shick, A.; and Williams,
T. 2021. Analyzing Teleoperation Interface Usage of Robots
in Therapy for Children with Autism. In Proceedings of the
ACM Interaction Design and Children Conference.
Hubbard, L. J.; Chen, Y.; Colunga, E.; Kim, P.; and Yeh, T.
2021. Child-robot interaction to integrate reflective story-
telling into creative play. In Proceedings of the 13th Confer-
ence on Creativity and Cognition, 1-8.

Lemaignan, S.; Warnier, M.; Sisbot, E. A.; Clodic, A.; and
Alami, R. 2017. Artificial cognition for social human—robot
interaction: An implementation. Artificial Intelligence, 247:
45-69.

Ligthart, M. E.; Neerincx, M. A.; and Hindriks, K. V. 2020.
Design patterns for an interactive storytelling robot to sup-
port children’s engagement and agency. In Proceedings of

the 2020 ACM/IEEE international conference on human-
robot interaction, 409-418.

Ogren, P.; and Sprague, C. 1. 2022. Behavior trees in robot
control systems. Annual Review of Control, Robotics, and
Autonomous Systems, 5(1): 81-107.

Porfirio, D.; Roberts, M.; and Hiatt, L. M. 2024. Goal-
Oriented End-User Programming of Robots. In Proceed-
ings of the 2024 ACM/IEEE International Conference on
Human-Robot Interaction, HRI 24, 582-591. New York,
NY, USA: Association for Computing Machinery. ISBN
9798400703225.

Riek, L. D. 2012. Wizard of Oz studies in HRI: a systematic
review and new reporting guidelines. J. Hum.-Robot Inter-
act., 1(1): 119-136.

Santos, H. B.; Teixeira, M. A. S.; de Oliveira, A. S.; de Ar-
ruda, L. V. R.; and Neves, F. 2017. Control of mobile robots
using actionlib. Robot Operating System (ROS) The Com-
plete Reference (Volume 2), 161-189.

Scheutz, M.; Williams, T.; Krause, E.; Oosterveld, B.;
Sarathy, V.; and Frasca, T. 2019. An overview of the dis-
tributed integrated cognition affect and reflection diarc ar-
chitecture. Cognitive architectures, 165-193.

Sun, M.; Leite, I.; Lehman, J. F.; and Li, B. 2017. Collab-
orative storytelling between robot and child: A feasibility
study. In Proceedings of the 2017 Conference on Interac-
tion Design and Children, 205-214.

Wilson, J.; and Yang, Y. 2024. Software Architecture to
Generate Assistive Behaviors for Social Robots. In Com-
panion of the 2024 ACM/IEEE International Conference on
Human-Robot Interaction, 1119-1123.

Yang, Y.; Langer, A.; Howard, L.; Marshall, P. J.; and Wil-
son, J. R. 2023. Towards an Ontology for Generating Behav-
iors for Socially Assistive Robots Helping Young Children.
In Proceedings of the AAAI Symposium Series, volume 2,
213-218.

