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The field of child-robot interaction (CRI) is growing rapidly, in part due to demand to provide sustained, 
personalized support for children in educational contexts. The present study uses a within-subject 
design to compare how children between 5 and 8 years of age (n=32) interact with a robot and 
human instructor during a tangram learning task. To assess how the children’s characteristics may 
influence their behaviors with the instructors, we correlated interaction metrics, such as eye gaze, 
social referencing, and vocalizations, with parent-reported scales of children’s temperament, social 
skills, and prior technology exposure. We found that children gazed more at the robot instructor and 
had more instances of social referencing toward a research assistant in the room while interacting 
with the robot. Age was related to task time completion, but few other individual characteristics 
were related to behavioral characteristics with the human and robot instructors. When asked about 
preferences and perceptions of the instructors after completing the tangram tasks, children showed a 
strong preference for interacting with the robot. These findings have implications for the integration 
of social technologies into educational contexts and suggest individual differences play a key role in 
understanding how children will uniquely respond to robots.

Socially assistive robots (SARs) are being designed for educational contexts as tutors and learning aids1. As 
robots and other artificial agents become utilized in classrooms and other learning environments, it is important 
to understand their effectiveness, and for whom they may work best. Several studies have shown that robots can 
motivate and encourage learning2–4. Many of these prior studies have considered how specific robot features 
(e.g., physical appearance, behaviors, and personalization abilities) influence interactions with human learners. 
However, few studies have compared how and whether learners show different patterns of interactions with 
robots compared to humans5–7, and there is a particular paucity of this work in young children8. Here we 
examine how children interact with a human and robot instructor during a tangram puzzle task. We focus on 
differences in children’s behaviors towards a robot vs. human instructor, how children’s individual characteristics 
influence their interactions, and their acceptance of both types of instruction. Our findings have implications for 
the real-world application of robots in classrooms, particularly for children of elementary school age.

Background
Robot vs. human instruction
To assess the potential benefits of including robots in educational contexts, it is important to understand how 
social robots perform relative to humans in their roles as instructors. Several studies have addressed this question 
by quantifying children’s learning outcomes after interacting with humans, robots, or screens. These studies have 
broadly suggested that robots can be as effective as human tutors on certain cognitive and affective tasks5 and in 
language learning9. While learning outcomes may be similar across robot and human instruction, the nature of 
these learning interactions may be vastly different.

Another approach to understanding the degree to which robots can be successful tutors is examining how 
children engage with and perceive robots as instructors. Taking a user-centric approach to understanding child-
robot interactions (CRI), whereby children’s individual differences and preferences are considered, may better 
elucidate how children are engaging with this technology and may inform how a robot can adapt its behaviors to 
different learners. In a study that examined young children’s engagement, vocalization, and emotion expression 
with a social robot and human instructor during drawing tasks, researchers found that children engaged more 
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and produced more words with a human instructor compared to the robot instructor9. In another study, children 
found it easier to communicate with a human tutee than a robot that they were trying to teach a task to10. In the 
current study, we capture children’s vocalizations towards both a human and robot tutor to further understand 
differences between children’s responses to the different instructor types.

While children’s vocal utterances are a commonly used and informative metric of children’s engagement with 
a social robot, children also make use of non-verbal signals in learning tasks with robots11. One quantifiable 
behavioral cue researchers can use to study children’s engagement with a tutor during a learning task is eye 
gaze. Eye gaze has been a well-studied topic in human-robot interaction and is linked to capturing attention, 
maintaining engagement, and increasing conversational fluidity between users and robots12,13. Children’s 
gaze has been shown to be especially important for social engagement and effective robot tutoring14 and is a 
frequently used metric in child-robot educational research15. While eye gaze towards a robot instructor may 
enhance children’s experience with the robot, it is also possible that excessively gazing towards a robot can 
distract children from the task at hand. In line with this prior work, we capture children’s eye gaze during 
their interactions with both the human and robot instructors to explore the relationship between eye gaze, 
engagement, and efficiency in the learning task.

Examining social referencing (i.e., children looking to others for information, particularly in uncertain 
situations), can provide useful insights into how children navigate learning tasks16. Studying social referencing 
may be particularly important in studies of CRI, as it reveals how children seek information from others 
when interacting with different kinds of interaction partners. Especially for young children, patterns of social 
referencing may indicate their level of comfort and willingness to engage with novel technological agents in 
learning environments. One study showed that children display different patterns of social referencing with 
robots compared to humans17. Specifically, children interacting with social robots engaged in more frequent 
referencing behaviors towards their caregivers than children interacting with human partners, with this pattern 
being consistent across multiple interaction sessions rather than decreasing as children become more familiar 
with the robot.

User-related characteristics
In the field of CRI, little is known about how individual differences in user characteristics impact how children 
interact with social robots in educational settings18. One characteristic that may shape interactions with robots 
is children’s age; several studies have demonstrated age-related changes in how children perceive and respond to 
social robots. For instance, 3-year-olds showed a trend towards trusting a human more than a robot after playing 
with either agent, and 7-year-olds displayed the opposite trend19. Children’s age also affects how well they can 
attend to robots. During an interaction with a peer-tutor robot, children who had just turned 3 years of age 
looked less at the robot during their interaction than children who were almost 4 years old20. In a subsequent 
review of CRI studies with an age range of 8–10-year old’s (N=276, Mage = 9.50), researchers found that younger 
children, compared to older children, may enjoy interacting with robots more, may be less sensitive to a robot’s 
interaction style, and be more prone to anthropomorphize robots21. Given the nuance of age-based results in 
CRI throughout various stages of development, we seek to uncover age-related trends among 5–8-year-olds in 
the present study.

Although there is limited work in this area, CRI researchers have begun to investigate how characteristics 
of children’s personalities may be salient predictors of their interactional style with robots. For example, shy 
children approach a social robot more distantly when compared with less shy peers and interact less expressively 
with social robots in general22. During a Simon Says activity with a social robot, children (Mage=4.5 years) who 
had higher levels of surgency, or a measure of extraversion, sociability, and high activity levels as indexed by 
the parent-report Child Behavior Questionnaire23, spoke more with the robot than children with lower levels 
of surgency24. In language learning research in adults, dispositional negative attitudes toward robots impede 
the ability to learn new vocabulary from a robot tutor25. Children’s temperament has been strongly associated 
with academic achievement (for a meta-analysis, see26), which suggests it is an important user factor when 
considering design parameters for child-robot interactions in learning contexts.

In addition to examining how children’s temperament is associated with their interactions with social 
robots, it is also important to consider how differences in children’s social development—including empathy, 
cooperation, and self-control—may impact child-robot interactions. For robot tutors to be able to best adapt 
to children’s needs as human tutors do, it is important that they interact with children in developmentally 
appropriate ways. This may include identifying and responding to specific social communication needs during 
learning tasks. While child-robot interaction studies have used social skills measurements as outcome variables 
after robot-assisted interventions (see27 for review), to the best of our knowledge, no study has explored whether 
children’s social skills at baseline affect their interactions with robot in meaningful ways. To this end, we seek to 
understand how social developmental stage may influence interaction characteristics with a robot compared to 
a human instructor.

Children’s prior experience with other social technologies like voice assistants (e.g., Alexa or Siri) may also 
shape how they will interact with robots. Children growing up in households with interactive technologies may 
view these technologies as social agents who have feelings and agency28 and may overestimate their intelligence29. 
In this study, we explore how the amount of technology a child has at home and the degree to which a child 
engages with that technology may contribute to how they interact with a novel robot in a learning context.

Children’s perception of robots
In line with advancements in the CRI community to include children as key stakeholders in the creation of 
robotic technologies for education contexts30, we sought to understand children’s preferences for instructor 
types between a human and robot instructor in the same task in this study. Some previous studies have used 
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hypothetical scenarios to explore children’s fears and hopes regarding robots31 or their intentions to use a 
robot32. A strength of the current study is we gather information on children’s preferences for a robot or human 
instructor after they have completed a real-life interaction with both instructor types.

The current study
The current study examines children’s behavior while completing two tangram tasks, one with a robot instructor 
and one with a human instructor. During the tasks, we gathered various metrics including children’s looking 
behavior (eye gaze) and their speech towards the robot and human instructors. We also examine child 
characteristics, specifically age, parent-reported technology use, temperament, and social skills, to determine if 
and how these person-centered factors differentially influence how children interact with the human instructor 
compared to the robot instructor. While there is a literature examining the effects of a physically-present robot 
in assisting users to complete a puzzle task33–36, the current work is novel through its inclusion of a young 
participant user group, its use of a within-subjects design to the compare a robot and human instructor in the 
same task, and the use of validated measures of child temperament and social skills and to understand how user-
related traits affect CRI. Our three main research questions can be summarized as follows:

	1.	 How do children’s behaviors differ when interacting with a robot and a human instructor during a tangram 
puzzle task?

	2.	 Which individual differences influence variation in child behaviors towards a robot and human instructor in 
a tangram task?

	3.	 After interacting with a human and robot instructor in the same task, what are children’s perceptions of and 
preferences for interacting with the different instructors?

Methods
Participants
The study involved one visit to a developmental psychology research laboratory on a university campus in a 
small city in the eastern United States. The study was advertised through emails sent to mailing lists of families 
who had expressed interest in participating in research at the university and through social media posts on the 
lead researcher’s webpage.

The study visit lasted about 1 hour. Thirty-two children aged 5–7 years (M=6.81 years, SD=0. 94; 17 girls & 15 
boys) completed the study. An additional 7 children began the laboratory visit but were excluded from analyses 
due to failing to complete the puzzle task with the robot (n=1) or with both the research assistant and the robot 
(n=5), or due to issues with the recording equipment (n=1). The Institutional Review Board (IRB) at Franklin 
and Marshall College reviewed and approved the IRB protocol for this study. Temple University agreed to cede 
IRB review and approval to Franklin and Marshall College. All research was performed in accordance with the 
regulations of the IRB at Franklin and Marshall College and with the Declaration of Helsinki.

Participants’ parents/legal guardians signed an online informed consent form prior to visiting the laboratory, 
and children gave verbal assent before participating in the laboratory task. Thirty-one parents identified their 
child as being White, and 1 parent identified their child as being “other race, ethnicity, or origin,” among the 
listed racial and ethnic categories (Hispanic, Latino/a/x, or of Spanish origin; American Indian or Alaska Native; 
Asian; Black or African American; Native Hawaiian or Other Pacific Islander; Prefer to self-describe). The 
median household income for participating families was between $100,000 and $124,999.

Procedure
During the laboratory visit, children completed two puzzle tangram tasks (one with a human instructor, one 
with a robot instructor). The order in which participants interacted with the robot and human instructor was 
counterbalanced across participants to minimize carry-over effects. Participating children were given a toy 
worth approximately $10 upon completion of the study. Participants’ parents or guardians also completed a 
series of online questionnaires prior to the laboratory visit, including a demographic questionnaire, a technology 
usage questionnaire, and assessments of their child’s temperament and social skills. Parents/guardians were 
compensated with a $10 gift card upon questionnaire completion.

Tangram task
For the tangram task, a research assistant accompanied the child into the testing room while their parent/
guardian remained in a waiting room. Upon entering the room, the child was asked to sit across a table from 
the instructor. Various tangram pieces and a piece of paper were on the table in front of the participant (see 
Fig. 1). The research assistant sat in a chair in the corner of the room and remained occupied with paperwork 
throughout, so as not to influence the participant-instructor interactions. Three video cameras had been set up 
in the testing room: One was positioned on the table facing the participant, one was mounted on the wall behind 
the instructor, pointing towards the participant, and one was on a tripod in the back of the room, facing the 
instructor.

With each instructor (robot and human), participants first completed an “introduction phase” where the 
human or robot instructor asked the child a question about their favorite color or animal and then instructed 
them to form a simple shape (a house or a square) from two tangram pieces. This introduction phase allowed 
the participants to familiarize themselves with both the tangram pieces and the interactive nature of the human 
or robot instructor.

Following the introduction phase, the task phase began. The tangram task was modeled on previous human-
robot interaction work with adult participants23. During the task, participants were asked to assemble colored 
tangram blocks into the shape of a fox (in their first task block) or a rabbit (in their second task block) using 
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a picture as a guide. The picture was on the sheet of paper on the table in front of the child, with the picture 
originally facing down such that it was not initially visible to the child. The tangram task began with requests 
from the instructor: “Can you now flip the paper?” then “Now can you use all the pieces to build something 
like the picture?” The robot or human instructor provided feedback as the participants worked to complete the 
puzzle, either in the form of direct instructions (e.g., “rotate the blue piece”), or offering help (e.g., “do you need 
help?”).

To elicit help-seeking behavior, one piece of the tangram puzzle was purposely hidden in a small pouch or 
cup on the testing table. The participant had to ask for help to locate this “missing piece,” to which the instructor 
replied with directions on where to find the piece. The tangram task was completed when the child successfully 
completed the puzzle, at which point the instructor said, “Yay, you got it all! Hooray! I am so proud of you.” 
For each child, the time to complete the task was obtained from the video recording, as was the duration of the 
introduction phase. The total interaction time was measured as the introduction phase plus the task completion 
phase.

To minimize differences between instructor conditions in the kinds of assistance offered and in affective 
expressivity, the human instructor was trained to use only the prompts and gestures that were programmed into 
the robot and to use a similar level of affect as the robot when interacting with the child. Both instructors were 
trained to only use prompts from a specific script (see supplementary materials for the full script) that provided 
both instructor types with sufficient responses for a variety of situations. To ensure consistency from the human 
across an interaction and between multiple interactions, the two research assistants who acted as the human 
instructors trained for over 30 hours by practicing cues and various responses in interactions with other lab 
members and with ten pilot participants.

Fig. 1.  (A) Experimental set-up with the human instructor and (B) with the robot instructor. Both conditions 
included tangram pieces, the sheet of paper with the illustration of the tangram puzzle shape, the pouch or 
mug containing the missing piece, and the participant’s seat, the instructor’s position at the table, and the 
camera used to extract participant eye gaze.
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The robot set-up
A Misty II robot (Misty Robotics) was used as the robot instructor for the tangram task due to its child-friendly 
appearance and interactive features. Through a “Wizard of Oz” setup, Misty was meant to appear as if it was 
acting autonomously, but the robot was being controlled by a human operator in a separate room. The operator 
used a touchscreen interface on a Chromebook to select from 70 predefined robot behaviors that provided 
motivation, offered guidance, engaged with the child, and acknowledged the child’s achievements (see Fig. 2). All 
behaviors were composed of a combination of six fundamental robot actions: To speak, change facial expression, 
look in a direction, point in a direction, tilt its head, and pause for a short amount of time.

To ensure consistent robot behavior, the operator trained for over 30 hours by practicing cues and various 
responses in interactions with other lab members and with ten pilot participants. Additionally, the user interface 
used by the wizard underwent three months of iterative development to ensure that it included a sufficient 
breadth of behaviors to cover all expected scenarios, while also limiting the number of controls to allow the 
operator to quickly find and select the appropriate one. To further facilitate rapid responses by the operator, the 
layout was designed for two-handed operation, with the most frequently used controls on the right side of the 
touchscreen (the operator was right-handed). For further description of the Misty interface, see37.

Eye gaze
To examine child looking behavior, we determined the proportion of time during the entire interaction 
(introduction phase and task phase) that each participant spent looking at the robot or human instructor. Eye 
gaze data was extracted from the video feed of the camera positioned on the table which provided a clear view of 
the child’s face during the interaction (see Fig. 1). Coordinates corresponding to the participant’s eye gaze were 
produced by processing the video with OpenFace (Baltrušaitis). For each frame of the video feed, the output of 
the video processing indicated whether the participant was looking at the agent (robot or human instructor) or 
at other areas in the room.

Social referencing and vocalizations
Three behavioral aspects of children’s interactions with the instructor were manually coded: (1) social referencing, 
defined as a count of the number of times the participant looked to the research assistant in the room (who was 
sitting in the corner and perceived to be working on something else) during the task, (2) a count of the child’s 
vocalizations towards the instructor, and (3) the count of the instructor’s vocalizations towards to the child. 
Four coders viewed the videos of interactions and reliably coded a subset of the videos with 97% reliability. 
Social referencing and vocalizations are included in our analyses as a count per minute; specifically, “count” was 
divided by the total time of the interaction to control for participants’ differing interaction times.

Parent-report social and behavioral measures
Participants’ parents or guardians completed two questionnaires about their child: the Child Behavior 
Questionnaire (CBQ)38 and the Social Skills Improvement Rating Scale (SSIS)37. The CBQ is a 97-item caregiver 
report measure designed to provide a detailed assessment of temperament in children aged between 3 and 7 
years38. Temperament refers to consistent individual differences in children’s styles of engagement with their 
surroundings, including how they respond to various stimuli and situations38. In the CBQ, parents are asked 
to describe their children’s characteristic reactions to various situations based on descriptions that range from 
“extremely untrue” of their child to “extremely true” of their child. The CBQ indexes fifteen aspects of child 

Fig. 2.  (A). Experimental set-up of the Misty robot from the participant’s viewpoint, (B) the fox tangram 
shape, and (C) the operator’s touchscreen interface for triggering robot behaviors.
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temperament, with subscales for Positive Anticipation, Smiling/Laughter, High Intensity Pleasure, Activity 
Level, Impulsivity, Shyness, Discomfort, Fear, Anger/Frustration, Sadness, Soothability, Inhibitory Control, 
Attentional Focusing, Low Intensity Pleasure, and Perceptual Sensitivity. The CBQ and SSIS are well-validated, 
commonly used, and statistically interpretable measures for assessing children’s temperament and social skills, 
respectively. Further, prior work has demonstrated how similar developmental scales can be useful in examining 
psychological correlates of technology exposure and use39,40 and are predictive of interactions with robots 
specifically18,22.

The SSIS is a 73-item measure for caregivers of children aged 3–18 years and is designed to assess children’s 
social skills and behavioral problems. Parents are asked to rate how often their child displays a particular behavior 
and how important the parent thinks the behavior is for their child’s development39. The SSIS has two primary 
subscales, one that covers child behaviors in various social domains (including communication, cooperation, 
assertion, responsibility, empathy, engagement, self-control) and the other that taps into domains of problem 
behavior (including externalizing and internalizing behaviors, bullying, hyperactivity/inattention, and autism 
spectrum traits).

Participants’ parents or guardians completed a survey of their child’s technology usage at home. The 
technology use survey asked parents to indicate which technologies, including televisions, tablets/iPads, desktop 
or laptop computers, smartphones, video game devices, voice assistants (e.g., Alexa or Google Voice), robot toys, 
and other types of robots (like robotic vacuum cleaners), families had in their home. They were then asked how 
many of each type of technology families had in their home (“total technology”), as well as how frequently their 
child used each technology in the past week (“frequency of technology use”).

Post-interaction interview
After completing the tangram task with the instructor, the child went with the experimenter to a second testing 
room where they were asked a series of post-interaction questions. A camera mounted on a tripod in the corner 
of the room videorecorded the child throughout. Moving to a second testing room allowed the child to answer 
questions about their interaction without the instructor present. It also allowed the original testing room to be 
reset for the second tangram task with the other instructor.

After each tangram task, participants were asked the following questions on a 5-point visual Likert scale from 
“Not at all” (1) to “Very much/A lot” (5): “How much did you trust [the instructor] to help you complete the 
puzzle? Would you like to play with [the instructor] again? How friendly do you think [the instructor] is? How 
smart do you think [the instructor] is?” Participants were told their responses would not be shared with either 
instructor.

After interacting with both instructors, children were asked which instructor they would prefer to play the 
tangram task with again if they had the chance (human/robot?), if they would rather play again with the robot 
instructor or a friend from school, and if they would rather play again with the human instructor or a friend 
from school. Children were also asked the following two questions specifically about the robot: “Do you think 
the robot has feelings?” (yes/no?) and “Do you think the robot is alive?” (yes/no?).

Results
Robot vs. human instruction
To address our first research question regarding robot vs. human instruction, we used paired t-tests to compare 
the means of various descriptive and behavioral metrics across the human and robot instructor conditions (see 
Table 1.). These metrics included introduction time (measured in minutes), task time (measured in minutes), 
gaze towards the instructor (proportion of time spent gazing at the instructor during the task, relative to the 
tangram pieces or elsewhere in the testing room), social referencing (count per minute), child vocalizations 
(count per minute), and instructor vocalizations (count per minute).

We first used Levene’s Test to test for homogeneity of variance and found equal variances for all variables of 
interest except for social referencing, which had unequal variances between conditions F (1, 30) = 26.89, p<.001. 
For the full results from Levene’s Test, see the Supplementary Materials. We used Welch’s Two Sample T-Test 
to compare means for social referencing across conditions and Student’s T-Tests to compare condition means 
across all other variables of interest.

When completing the task with the robot instructor, children spent more time in the introduction phase 
(t=−11.40, p<.001), spent a greater proportion of time looking at the instructor (t=−3.74, p<.001), and referenced 
the research assistant in the room more often (t=−3.79, p<.001), compared to when they were completing the task 
with the human instructor. Task completion times did not differ between instructor types (p>.05). The number 

Human
mean

Human
SD

Robot
mean

Robot
SD t p 95% CI lower 95% CI upper

Introduction time (minutes) 0.97 0.35 1.90 0.30 −11.4 <.001 −1.09 −0.77

Task time (minutes) 3.15 2.37 3.47 1.91 −0.59 0.55 −1.39 0.77

Gaze at instructor (proportion) 0.34 0.15 0.48 0.15 −3.74 <.001 −0.21 −0.07

Social referencing (count/minute) 0.06 0.25 0.81 1.09 −3.79 <.001 −1.15 −0.35

Child vocalizations (count/minute) 3.12 3.48 4.59 5.37 −1.29 0.20 −3.73 0.79

Instructor vocalizations (count/minute) 16.34 11.93 15.00 8.47 0.52 0.61 −3.84 6.52

Table 1.  Means, standard deviations, t-tests results for the human instructor and robot instructor conditions.
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of child vocalizations was greater towards the robot compared to the human instructor, but this difference did 
not reach statistical significance (p>.05). The human instructor had more vocalizations per minute than the 
robot instructor, but this was not a statistically significant difference (p>.05). As shown in Table 1., the variability 
around the various means (as shown by the standard deviations) supports further investigation into individual 
difference measures.

Order effects
Table 2. displays order effects which were tested using 2 x 2 mixed ANOVAs with Bonferroni corrections to 
examine the effects of Instructor (human vs. robot) and Order (Human-Robot or Robot-Human) and on all 
dependent behavioral outcomes: introduction time, task completion time, gaze at instructor, social referencing, 
child vocalizations, and instructor vocalizations. Pairwise contrasts were computed for each behavioral outcome 
across instructor type and instructor order (e.g. “emmeans(introduction, pairwise ~ Instructor | Order, adjust = 
“bonferroni”). Bonferroni adjusted p-values for significant pairwise contrasts are reported in Table 3.. Boxplots 
depicting the main and interaction effects and tables with marginal means for all contrasts are displayed in the 
Supplementary Materials.  

There was a main effect of Instructor (F (1,30) = 137.72, p <.001) on the introduction phase length—participants 
spent significantly longer with the robot instructor than the human instructor during the introduction phase. 
There was no significant effect of order on introduction time (F (1,30) = 0.01, p = 0.94), suggesting that the order 
in which the participants interacted with either instructor had no impact on introduction time. There was no 
significant interaction effect of instructor and order on introduction time.

There was no significant main effect of instructor type on task time, (F (1, 30) = 0.74, p =.40), indicating that, 
overall, task time did not differ significantly between the human and robot instructors. The results indicated that 
there was no significant main effect of order on task time, (F (1, 30) = 1.51, p =.23), suggesting that the sequence 
in which participants experienced the instructors did not significantly impact task time. However, there was a 
significant instructor x order interaction (F (1, 30) = 15.83, p <.001), suggesting that the effect of instructor type 
(human vs. robot) on task time depended on the order in which the participants completed the task with each 
instructor. Children in the human-robot order completed the task with the human in 4.26 minutes and the robot 
in 3.10 minutes on average, whereas children in the robot-human order completed the task with the robot in 
3.83 minutes and the human in 2.04 seconds on average. In other words, children in the Human-Robot order 
completed the task only 1.16 minutes faster on average during their second interaction (with the robot in this 
case), whereas children in the Robot-Human condition completed the task 1.79 minutes faster on average during 
their second interaction (the human, in this case), and this difference is significant.

There was a main effect of instructor on gaze (F (1,30) = 24.93, p <.001), whereby children spent longer 
proportions of time gazing at the instructor in the robot condition compared to the human condition. There 
was no significant effect of order on gaze, (F (1,30) = 0.034, p = 0.85), meaning the order in which the instructor 

Instructor order Contrast Estimate p Interpretation

Introduction Human–robot Robot - Human 0.78 0.00 Robot significantly higher

Introduction Robot–Human Robot - Human 1.08 0.00 Robot significantly higher

Task Human–robot Robot - Human −1.16 0.04 Robot significantly lower

Task Robot–Human Robot - Human 1.80 0.00 Robot significantly higher

Gaze Human–robot Robot - Human 0.19 0.00 Robot significantly higher

Gaze Robot–Human Robot - Human 0.09 0.03 Robot significantly higher

Social referencing Robot–Human Robot - Human 1.06 0.00 Robot significantly higher

Child vocalizations Robot–Human Robot - Human 3.38 0.00 Robot significantly higher

Instructor vocalizations Human–Robot Robot - Human −7.50 0.01 Robot significantly lower

Table 3.  Summary of significant pairwise contrasts between instructors by instructor order.

 

Main effect of
instructor

Main effect of
order

Interaction:
instructor: 
Order

F (30,1) p F (30,1) p F (30,1) p

Introduction time (minutes) 137.7 <.001 0.01 0.94 3.59 0.07

Task completion time (minutes) 0.74 0.39 1.51 0.23 15.83 <.001

Gaze at instructor (proportion) 24.93 <.001 0.03 0.85 3.34 0.08

Social referencing (count/minute) 14.64 <.001 0.9278 0.343 2.54 0.121

Child vocalizations (count/minute) 4.57 0.04 7.63 0.01 7.70 0.009

Instructor vocalizations (count/minute) 0.54 0.47 1.12 0.30 11.40 0.002

Table 2.  Univariate type III repeated-measures ANOVA for instructor order effects.
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presented did not influence gaze behavior. There was no interaction of instructor x order (F (1,30) = 3.34, p = 
0.08).

There was a main effect of instructor on social referencing (F(1,30) = 14.64, p <.001), showing that children 
engaged in social referencing more frequently when interacting with the robot compared to the human instructor. 
There was no significant effect of order on social referencing (F(1,30) = 0.93, p = 0.34), meaning the sequence in 
which the instructor presented did not impact social referencing behavior. Additionally, there was no significant 
interaction between instructor x order (F(1,30) = 2.54, p = 0.12), suggesting that the effect of the instructor on 
social referencing did not differ based on the order of the interactions with the instructors.

There was a significant main effect of instructor (F(1,30) =4.56, p=.04) and order (F(1,30) =7.63, p=.01) 
on child vocalizations where in the robot-human order, children spoke significantly more with the robot than 
the human instructor. There was no significant difference in child vocalizations in the human-robot order. 
Additionally, there was a significant order × instructor interaction (F(1,30) = 7.69, p =.01). Children spoke more 
with the robot when they interacted with the robot first, compared to children who encountered the robot in 
their second interaction.

There was no significant main effect of order on instructor vocalizations (F(1,30)=1.12, p=.30). Additionally, 
there was no significant main effect of instructor (F(1,30) =0.54, p=.47), suggesting that the type of instructor 
(human vs. robot) did not significantly influence instructor vocalizations. However, there was a significant 
instructor × order interaction (F(1,30) =11.40, p=.002), demonstrating that the robot instructor spoke 
significantly less when children interacted with the human first and robot second.

User-related characteristics
Means and standard deviations for all user-related predictors are listed in Table 2.. Cronbach’s alpha for the 
three factors of the Child Behavior Questionnaire were 0.82 for Surgency, 0.80 for Negative Affect, and 0.81 for 
Effortful Control. The types of technology families endorsed having in their home and the amount their child 
used each technology is shown in Fig. 3.

To investigate whether individual differences were associated with variation in child behavior towards the 
robot and human instructor, we ran Pearson correlations to test the relations between the child’s age, technology 
use, temperament, and social skills measures with the children’s introduction time, eye gaze, and social 
referencing. For task time and child vocalizations, a partial correlation was used to control for the effect of 
Instructor Order (see Table 4.).

Age was significantly negatively associated with children’s task time with both the human and the robot 
instructors after applying the Benjamin-Hochberg correction. Age negatively related, but not significantly, to 
social referencing and child vocalizations with the human but not the robot instructor. We found that perceptual 
sensitivity was significantly negatively related to social referencing with the robot instructor. After applying the 
Benjamin-Hochberg correction to all user-related predictors, no other correlations were significant.

A Pearson’s product-moment correlation was conducted to examine the relationship between age and belief 
that the robot is alive. The results indicated a negative correlation that approached significance, r(34) = –.32, 
p =.06. The 95% confidence interval for the correlation ranged from –.59 to.01. A Pearson product-moment 
correlation was conducted to assess the relationship between age and belief that the robot has feelings. The 
correlation was positive but not statistically significant, r(34) =.25, p =.14. The 95% confidence interval ranged 
from –.09 to.53, indicating considerable uncertainty around the estimate.

Children’s perception of the instructor
Paired t-tests showed that participants rated the robot significantly higher than the human instructor when 
asked about friendliness (t=−2.11, df=30, p=0.04) and about how much the child would like to play with the 
instructor again (t=−2.26, df=30, p=0.03). There were no significant differences between how children rated the 
trustworthiness of the robot and the human instructor (t=−1.49, df=30, p=0.15) or in ratings of how smart either 
instructor was (t=−0.83, df=30, p=0.41).

After completing the tangram task with both the robot and the human instructor, 93% of participants 
answered that they would prefer to play the game again with the robot, with the remaining 7% indicating a 
preference for the human instructor (Fig. 4). A Chi-Square Goodness of Fit Test with a null hypothesis assuming 
an equal preference for the human and robot instructor showed that responses significantly deviated from an 
even distribution, X2=22.53 (df=1, p<.001).

Discussion
This study utilized a within-subjects design to elucidate patterns and predictors of children’s behavior during a 
tangram task with a robot or human instructor, to better understand in which contexts, and for whom, robot 
tutors may be a good fit. Specifically, we used children’s eye gaze, social referencing, and vocalizations to compare 
the interactions across instructors. We also investigated how child-level characteristics, including the child’s age, 
parental report of child behavioral and social tendencies (on the Child Behavior Questionnaire; CBQ and the 
Social Skills Improvement Rating Scale; SSIS) and a parental report measure of their child’s technology usage at 
home, correlated with interaction elements. We assessed participants’ technology usage to test the hypothesis 
that prior technology exposure would affect how children perceived the robot, as it has in previous studies with 
children and adults41. To highlight that children are key stakeholders in work that studies their interactions with 
robots, we also examined children’s preferences for interacting with either instructor after they completed the 
study.

Overall, we found that children’s age and temperament influenced only some aspects of their interactions. 
Children rated the robot instructor highly on friendliness and indicated that they would like to play a tangram 
task again with the robot. We did not find a relation between children’s prior technology use with interaction 
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elements. We now review our main findings and suggest broader implications of these results for CRI in real-
world contexts.

Robot vs. human instruction
Compared to the human instructor, children spent more time looking at the robot and referenced the research 
assistant in the room more often when interacting with the robot. One factor driving this finding may be the 
novelty of the robot. The children’s increased tendency to socially reference the research assistant in the room 
while interacting with the robot suggests they may have been trying to use information from the research 
assistant’s facial expression to inform their own perception of the robot in this less familiar learning context. 
Our finding replicates that of17 who demonstrated that preschool-aged children (ages 4–5, n=20) utilized social 
referencing behaviors with their caregivers more often while interacting with a robot compared to a human. 
Tolksdorf and colleagues’ results, as well as our findings, suggest that it is important to consider where and when 
a child may need additional support when interacting with novel digital technologies17.

Although there was no difference in task completion times with the robot or human instructor, children 
spent more time in the introduction phase of the experiment with the robot compared to the human instructor. 
This may be due, in part, to slight lags in the operator’s response during the introduction phase, which included 
more individualized responses than the task phase. Alternatively, children may have needed or wanted more 

Fig. 3.  Results from the Technology Use questionnaire showing (A) the types of technology parents reporting 
having in their home, and (B) the frequency at which their child uses each type of technology per week.
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time to get acquainted with the robot, again due to its novelty. Prior work has shown that novelty of a robot can 
be a distraction to children’s learning17, so it will be important to test repeated interactions with our paradigm 
to see if children still complete the task with the robot and human at similar rates after the novelty effect is likely 
to wear off.

Order effects
Though we tried to control for order effects by alternating the order in which participants interacted with the 
human and robot, we did find effects for task time, child vocalizations, and instructor vocalizations. While 
children in both orders got faster at completing the tangram task in their second interaction, children who 
interacted with the robot first and human second had a more significant decrease in task time than children 
who interacted with the human first and robot second. This could suggest that children learned more effectively 
from the robot instructor than the human instructor. This learning effect was present even though children 
gazed at the robot instructor for longer proportions of time than the human instructor more overall. Despite 
studies showing that the novelty effect of robots in learning tasks—as indexed by children’s heightened gaze—
may impede learning17, we did not find this to be the case in our sample.

There was also an order effect on the amount children spoke to either instructor. Children who interacted with 
the robot first and human second spoke significantly more to the robot than children in the human-robot order. 
Interestingly, this is the same group of children who completed the task more quickly the second time around 
(with the human instructor), lending more evidence to the interpretation that children engaged with and learned 
from the robot effectively in this order. However, some of the effects of the differences in child vocalizations 
may be driven by the fact that children in the human-robot order spoke less in both conditions relative to the 
robot-human order, across both interactions (though not significantly so). It may then be a random effect of our 
relatively small sample that quieter children were randomly grouped together, which we then controlled for in 
our correlations between child vocalizations and individual predictors. Future studies may wish to establish a 
baseline level of vocalization among the participants to consider this when assigning instructor order to further 
understand differences in vocal engagement with human and robot instructors, and how this engagement may 
contribute to children’s learning from either instructor type.

We also found an interaction involving instructor vocalizations, whereby the robot spoke significantly less 
in the human-robot order than in the robot-human order. This may have compounded with the other effects 
we observed for task time and child vocalizations—it is possible that if the robot spoke less, children may have 
been less engaged and thus spoke less, and less engagement may have led to longer task completion times on 
the second trial than expected. However, it’s important to note that there are only sixteen participants in each 
instructor order group (robot-human; n=16, human-robot; n=16), which may not be sufficiently powered to 
fully understand the interaction effects we present here42. We hope larger samples may be better equipped to 
fully understand the mechanisms of learning with both instructor types, and why the order of interactions with 
robot instructors may matter when introducing robots to classroom settings.

Fig. 4.  Participants’ preferences for playing the tangram task again with the robot instructor or a friend, the 
human instructor or a friend, and either the human or robot instructor.
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User-related characteristics
Given the large body of literature on how development and age shape children’s interactions with and perceptions 
of technologies, we examined the associations between age and interaction features across instructor types. 
We found that age was negatively correlated with task duration time across instructor types, suggesting older 
children completed the tangram faster. For the application of robots in educational settings, particularly with 
children across elementary school ages, it will be important to understand children’s interest and motivation to 
sustain attention when interacting with social robots.

Though not a significant trend, older children were more likely than younger children to see the robot as 
alive, while younger children more often saw the robot as having feelings, compared to older children. This is in 
line with previous research suggesting children tend to anthropomorphize robots, even after brief interactions 
with them3. Children also may have been more inclined to anthropomorphize the robot given the Wizard-of-Oz 
setup used in the experiment; in studies where children are told that the robot is being controlled by a human, 
they are less likely to anthropomorphize the robot43,44. The non-significant finding that fewer older children 
thought the robot had feelings than younger children is congruent with developmental trends of younger 
children being more likely to attribute affective and mental states to inanimate objects, including robots28,44,45. 
Our results related to children’s age and their perceptions should be interpreted with caution as they are not 
significant, however it is possible with a larger sample size or additional trials our results may continue to reflect 
what has been shown in prior literature relating age and perceptions of social robots.

Child temperament, as indexed by the three broad dimensions and fifteen subscales of the CBQ, was largely 
unassociated with introduction and task phase durations, eye gaze, social referencing, and vocalizations towards 
the robot and human instructors, with one exception. We found that perceptual sensitivity—which measures 
how children detect low-intensity stimuli from the external environment—was negatively correlated with the 
amount the child engaged in social referencing while interacting with the robot instructor. This may suggest that 
children who are more attuned to subtle facial expressions and emotional cues from the robot did not need to 
look towards the experimenter in the room for guidance as often. Alternatively, children who are more sensitive 
to small visual details may have been focusing heavily on the puzzle in front of them and were not as inclined to 
turn that focus elsewhere to the experimenter in the room.

We did not replicate the findings of22, who showed that surgency was positively related to children’s verbal 
engagement with a robot, or those of18, who found that shy children interacted less expressively with a robot. 
We saw correlations that were nearly significant but did not withstand corrections for multiple comparisons. As 
such, these relationships warrant further investigation in future work. We saw that fear was negatively related 
(but not significantly so) to looking at the robot instructor, while shyness was related (but not significantly so), 
to speaking to the human instructor but not the robot instructor. As these were not significant correlations, they 
should not be over-interpreted. However, the differing patterns of relationships between children’s temperament 
with humans compared to robots supports methodologies that directly compare humans and robots in the same 
task. When designing robot tutors, it may not be sufficient to rely on children’s interaction characteristics that 
are known form human-human interactions. Instead, children’s behavior may be specific to context—a shy child 
may only be shy with a robot or a human; their behavior in one scenario may not predict the other.

While we did not find any associations between social skills and engagement with the human and robot 
instructors, children’s social developmental stage may still be a relevant user-characteristic to consider when 
designing and developing robotic tutors for young children. Similarly, we did not see any relationship between 
technology use at home and interaction characteristics. While some studies suggest prior exposure to robots may 
increase positive perceptions of future robot encounters46, we found that our sample had very low exposure to 
robots or interactive voice agents (Fig. 3B) before participating. As robots become more ubiquitous in museums, 
libraries, or schools, or if children begin to increase their interactions with interactive agents like voice assistants 
at home, it is possible the level of exposure to such technologies may influence how a child learns from a robot 
tutor.

Despite the lack of associations between children’s characteristics and their interaction behaviors with human 
and robot tutors shown in our study, we posit that the study of child characteristics in CRI is still crucial to 
building effective and ethical devices for children. Other CRI studies have shown that robots that personalize 
their tutoring according to children’s academic knowledge, attention, working memory47, or facial expressions48 
positively impact children’s learning gains. As artificial intelligence and social robot technologies become more 
integrated, other characteristics that impact learning–such as age, temperament, social development, prior 
technology use—may be able to inform personalization architectures that contribute to better learning outcomes 
for children.

Children’s perception of the instructors
Based on the pattern of responses to the post-interaction interviews, children strongly preferred the robot 
compared to the human instructor. However, since the human instructor was trained to only exhibit gestures and 
behaviors that the robot could portray, these preferences should be considered in the context of this experimental 
set-up. The human may have seemed unfriendly relative to how a young child may expect a human instructor to 
act. Indeed, children ranked the human instructor lower than the robot when asked about friendliness. Further 
work with repeated exposures to a robot and/or enhancement of instructor affective responses may be helpful 
for understanding these effects. While children’s perceptions of the instructors may not be directly related to 
how well they can learn from either instructor, it is important that children’s perspectives are actively sought and 
incorporated into the design process of social robots for educational contexts49.
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Limitations and future directions
Generalizability may be limited by the study sample, which was children with a homogenous racial and 
socioeconomic background from a small college town in the eastern United States. Further, children interacted 
with both instructor types for only a few minutes, and future research would benefit from studying longer or 
repeated interactions, particularly to gauge how any novelty effects of the robot may wane over time. Larger 
samples sizes would also allow for a closer look at the order effects we observed when children completed the 
tangram task with the robot instructor first compared to the human instructor first. Additionally, the study relied 
on parent reports of child temperament and social skills. Future studies may wish to include teacher report and 
behavioral assessments of temperament in the laboratory that could be used to supplement the parent report 
measures.

Broader limitations concern the Wizard-of-Oz setup and the “matching” of the human instructor’s affect 
to the Misty robot. Given that the human experimenter was trained to resemble Misty in their interactions, 
children’s behaviors elicited during the task may be different than with an adult in a real classroom who does not 
have this constraint.

Conclusion
With the development and application of robot tutors likely to become more prevalent, there is a need to better 
understand patterns of children’s unique responses to robots in learning settings. The current study adds to the 
literature on individual differences in CRI by showing how child temperamental style may influence how children 
interact with robots compared to humans. The results from this study can guide the design and implementation 
of social robots for use with young children and can encourage further study of how child characteristics 
influence children’s behaviors and experiences during and after interactions with a robot instructor.

Our results on individual predictors of CRI differ from prior work showing that children’s levels of extroversion 
and shyness predict how they behave with a social robot. Instead, we found that a different predictor—how 
sensitive children are to environmental stimuli—was related to how often they referenced an experimenter in the 
room while interacting with the robot, but not the human, instructor. Given our focus on individual predictors 
of CRI, we felt it imperative to include a human condition to serve as a baseline relative to the robot condition. 
Our results suggest there may be differences in how children respond uniquely to robots compared to human 
instructors based on the child’s behavioral traits.

We also found that children learned effectively from both instructor types, and gazing towards the robot 
was not a distraction to learning as previously studies have suggested. We also find potentially important order 
effects, where children who interacted with the robot first seemed to have been more engaged and were able to 
improve their tangram task time significantly more than the children who interacted with the human instructor 
first. However, as we explain in the discussion, these results should be interpreted with caution based on our 
sample size.

The implications of our findings, and the main contribution of this study, center on the potential for user-
based traits to inform the development of adaptive agents, and metrics that can inform best practices for 
introducing robots to young users. Future applications may be able to use information derived from measures 
such as the CBQ and the SSIS to better adapt to a child user’s needs. Alternatively, such psychological measures 
could be used to validate unsupervised learning models that generate interaction styles for a child user based on 
robot-generated temperament profiles.

While child behavior profiles can be used to guide adaptive interactions, this also raises ethical concerns 
related to the long-term implications of children’s exposure to robots46,50. Studying children’s individual 
differences regarding how they respond to robots draws attention to considerations around the adverse effects 
of CRI, which could shape best practices and regulations regarding how robots are introduced to children and 
at what ages.

Data availability
Please contact the corresponding author, Allison Langer, at Allison.langer@temple.edu for access to de-identi-
fied data files.
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