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Abstract— Research on gestures in human-robot interaction
has largely focused on finding that children may learn better
and enjoy interacting with robots that gesture more often.
However, no research to date has examined how children
themselves spontaneously gesture in the presence of a human
vs. robot instructor. A child’s use of gesture might be indicative
of engagement or rapport with the robot instructor and may
provide key information about a robot instructor’s efficacy
or opportunities for intervention. As such, the current study
examines 5-8-year-old children’s rate of deictic and conventional
gestures when being assisted by a robot vs. human instructor.
Overall, we find age-related effects in children’s gestures
relation to the specific instructors. There is a significant negative
correlation between age and gesture rate when learning from
the human instructor, but no significant correlation with the
robot instructor. These results are discussed in relation to
children’s perceptions of the instructor, task difficulty, and age-
related cognitive development shifts.

I. INTRODUCTION

Research has shown that gestures provide vital information
for communication, above and beyond that conveyed by
language (see [1]). Even early in development, children are
sensitive to the information that gesture provides [2], and
they utilize gestures to effectively communicate with others
[3]. In the human-robot interaction (HRI) sphere, the study
gesture has mainly explored how changes in the types of
gestures robots produce or the rate of robot gestures can
influence perceptions in humans (e.g., [4]). Although there
is research exploring the influence of robotic gestures on
children [], almost no work has been done exploring how
cildren gesture spontaneously to robots. In the current study,
we explore how 5- to 8-year old children spontaneously
gesture to either a robot instructor and a human instructor
during a learning paradigm.

Previous research is inconsistent concerning expected rates
of gesturing across this age range. For example, studies that
have employed paradigms meant to elicit increased gestures
in human-human dyads have found that 10-year-olds gesture
more than 6-year-olds [5]. However, research exploring a
more spontaneous rate of gesture suggests a decrease in
gesture as children approach age 7, potentially due to an
increase in language sophistication that decreases the need
for gesture [6].

Here, we are interested in understanding how children
gesture toward a robot during a learning task. This work
is novel in its focus on child-produced, rather than robot-
produced, aspects of gesture during a human-robot inter-
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action. We explore developmental changes in how often
children spontaneously gesture with a robot vs. human
instructor and what kinds of gesture they use. We consider
3 types of gestures: deictic (used to draw attention to an
object in the environment), conventional (which represent
concepts in a culture-specific manner), and representational
(used to visually depict an attribute or actions). We find
that children spontaneously use a variety of gestures when
interacting with a robot, and that age accounts for some of
the variation in the type and frequency of gestures children
employ. Results from this study highlight the importance
of integrating user gestures into the design of interactions
involving robot instructors in learning contexts with young
users. Furthermore, our coding scheme and results may
inform the design of future studies investigating children’s
gestures with robots.

II. BACKGROUND
A. Child Gestures when Learning

Current gesture research in developmental psychology
suggests that user gestures differ substantially between in-
dividuals [7]. While experimental studies remain scarce,
learners’ gesture rate may make a difference in learning,
particularly in how learner gesture rate may be related to
response to an instructor’s gesture rate [7]-[9]. Given the
utility of robots in educational contexts [10], [11], it is im-
portant to understand (a) gesture patterns by children toward
a robot relative to a human, and (b) the implications of these
gesture patterns for designing effective robot instructors.

B. Robot Gestures to Children in HRI

Studies have examined the effects of robots’ ability to
gesture based on user experience [12] For example, robot
gesture has been shown to increase children’s enjoyment and
engagement in learning paradigms [13]-[15], and can also
increase early imitation and learning [13]. Gesturing robots
have effectively supported gesture learning for children with
autism spectrum disorder who may demonstrate delays in
gesture production and understanding [16]. Though gestures
that emanate from robots have shown to be productive for
early learning, a research focus on the child’s own gestures
in these contexts has been lacking.

C. User Gestures in HRI

Previous gesture work in HRI research has largely focused
on equipping robots with advanced gesture recognition tech-
nology [17]-[19], For example, deictic gestures (e.g., point-
ing) have been used to disambiguate referring expressions in



language [20], [21] and to improve the robot’s understanding
of user intent [22].

A few studies have investigated how user gestures may
inform interaction effectiveness and quality. One study ex-
amined how adult participants used gestures to teach a
robot a task and found that users rarely used deictic and
symbolic gestures, relying mostly on object manipulations
[23]. Another study attempted to prepare for automatic
recognition of gestures by capturing a small dataset of how
people naturally gesture [24]. Since no study has investigated
child gestures towards a robot, and these gestures may be
meaningful for successful interactions in learning contexts,
the current study examines the association between age, child
gesture rates, and learning in a tangram task with a human
or robot instructor.

D. Age-related Trends in Child-Robot Interaction

Prior research has shown developmental trends in the ways
children understand and interact with robots. For example,
younger children trust a human more than a robot after
playing with both partners [25], and younger children may
trust inaccurate robots less than inaccurate humans, relative
to older children [26]. Age may also contribute to how well
they can attend and engage with a robot. Three-year-olds
look less at a robot during an interaction than 4-year-olds
[27], younger children, compared to older children, have
been found to enjoy interacting with robots more, potentially
because they are more prone to anthropomorphize robots
[28]. In line with this work, we seek to uncover age-related
trends in children’s gesture rates towards a robot and human
instructor.

III. METHODS
A. Participants

The study involved a 1-hour visit to the investigators’ re-
search institute. Thirty-two children aged 5-8 years (M=6.81
years, SD=0. 94; 17 girls & 15 boys) completed the study.
According to parent report, 97% of participants identified
as White and 3% identified as “Other race/ethnicit”. Seven
children began the laboratory visit but were excluded from
analyses due to failing to complete the puzzle task (n=0),
or due to issues with the recording equipment (n=1). The
Institutional Review Board (IRB) at the primary investi-
gator’s research institute reviewed and approved the study
protocol. Participants’ parents/legal guardians signed an on-
line informed consent form, and children gave verbal assent
before participating in the laboratory task.

Children were asked to complete two tangram puzzles,
adapted from the TOSA Test of Spatial Ability [29]. Tan-
grams are a set of simply shaped pieces that can be arranged
to resemble an object (e.g., cat, rabbit, boat). Their use
has been found to tap spatial and mathematical abilities in
children [30].

B. Tangram Task

Participants entered a testing room and were seated at
a table across from either a human or robot instructor

Fig. 1.
on the tangram task. A research assistant idly sits in the corner. Behind the
one-way mirror is the robot controller.

A participant sits across from the robot instructor while working

(see Figure 1). Children interacted with both instructors,
with the order of the first instructor counterbalanced across
participants. A one-way mirror was behind the instructor.
Three cameras recorded each interaction. Figure 1 shows the
first camera angle, the black box under the robot in the figure
contains the second camera, and a third was mounted on the
wall above the mirror.

Tangram pieces and an illustration showing a target puzzle
arrangement were on the table in front of the participant,
along with a mug and a small green bag that were used to
hide a piece of the puzzle. The research assistant sat in a chair
behind the child and appeared busy so as not to influence the
participant-instructor interactions.

For each instructor type, participants first completed an
introduction phase to orient the child to the instructor and
the task. The instructor asked the child warm up questions
and taught them how to complete a 2-shape tangram puzzle.
Data collected during this interaction is not part the of our
current work. The participants then proceeded to the tangram
task. Participants were asked to assemble tangram pieces into
a shape using an illustration as a guide. Modeling off of
previous HRI work with adult participants [31], one piece
of the puzzle was hidden to ensure the participant needed to
interact with the instructor to complete the task.

The instructor provided feedback and encouragement to
assist the child as they completed the puzzle (see [32] for
a description of instructor prompts). None of the instructor
prompts were designed to require or promote gesturing.
Children were given as much time as necessary to complete
the puzzle. For the purpose of this paper, only the tangram
task phase with the robot instructor was analyzed.

C. Robot Set-Up

The Misty II was used as the robot instructor for the
tangram task due to its child-friendly appearance and inter-
active features. The robot appeared to be autonomous to the
child, although in reality it was being controlled by a human
operator in a separate room via a human-centric Wizard of
Oz setup that simulated the robot’s sensing and reasoning
capabilities [33]. While observing the interaction through a



one-way mirror, the operator selected from 70 predefined
robot behaviors to assist the child. See [32] for a descriptions
of the behaviors. To ensure that the behaviors covered all
expected scenarios while also limiting the number of controls
to allow the operator to quickly find and select the right
one, the behaviors and user interface were developed and
tested through an iterative development process using a series
of test interactions with students and pilot participants. To
facilitate rapid and consistent responses by the robot, the
operator trained for over 20 hours by practicing in simulated
interactions with researchers and pilot participants.

IV. VIDEO CODING
A. Gesture Coding

Session videos during the tangram task phase were coded
by research assistants. Task onset was the moment the
illustration of the puzzle was presented until the instructor
indicated that the participant completed the puzzle.

Based on the gesture categories outlined in [34] and [35],
we developed a video coding scheme that categorized hand,
arm, and head gestures into three distinct types. [35] utilized
a similar scheme on slightly younger children than our
sample and also utilized physical objects.

1) Deictic: Gestures that direct attention to a specific
referent or entity. Based on the literature on child
gestures [35], [36], we distinguish between two types
of deictic gestures.

a) Point: Gestures that use a finger or hand to point
at and direct attention to any object or agent.
(E.g, pointing with their finger at the puzzle when
looking for the instructor to assess their progress.)

b) Show: Gestures that indicate an object by pre-
senting, holding, or lifting it up. (E.g., picking up
a piece and presenting it to the instructor when
asking about the piece.)

2) Conventional: Gestures that have established social
meanings. (E.g., nodding their heads in affirmation or
shrugging their shoulders when uncertain what to do.)

3) Representational: Gestures to represent objects or
actions. (E.g., pretending one’s hand is a tangram piece
and rotating it in space, or sliding a missing piece into
position.)

Three trained research assistants independently coded par-
ticipant videos using Mangold INTERACT software. Ges-
tures were coded at their onset and were then categorized
using the coding scheme above. Twelve out of the 32 videos
(37.5%) were double coded by two of the research assistants.
The coders then conversed about any disagreements and
reached consensus on the final coding file. We analyze total
count score (for each gesture type within each instructor
block) and gesture rates (gestures/minute) to account for the
fact that longer task completion times might provide more
time and opportunity to gesture.

V. RESULTS

Our dataset consists of 224 total gestures towards the
instructors (robot, human). Children produced 116 gestures

TABLE I
COMPARING GESTURE RATES WITH ROBOT VS HUMAN INSTRUCTOR

Robot Human
M SD M SD p  Effect Size
Show 0218 0.541 0.086 0.191 0.349 0.283
Point 0.166  0.255 0360 0.443 0434 -0.199
Deictic 0.383 0.664 0345 0484 0.714 0.065
Conventional  0.632  0.747 0.736 0.708 0.494 -0.122
Total 1.031 1.235 1.123 1.041 0.669 -0.076

Note. To calculate the p-values, Show and Point rates use Wilcoxon
signed-rank, and Deictic, Conventional, and Total use Student t-test.
For the Wilcoxon test, effect size is given by the matched rank biserial
correlation. For the Student t-test, effect size is given by Cohen’s d.

with the robot instructor and 108 with the human instructor.
We analyzed deictic gestures both separately (show, point)
and combined across subtypes. Representational gesture rates
appeared too infrequently to analyze individually (n=6), but
are included in the total gesture rates.

Total gesture counts were significantly positively corre-
lated with task time (r=0.539, p<.001), such that the longer
a child took to complete the task, the more they gestured.
Task time also was significantly negatively correlated with
age (r=-0.459, p<.001), such that older children completed
the task significantly faster than younger children. To account
for age differences and to provide a consistent metric across
instructor types, the remainder of the analysis uses gesture
rates.

We compared the rates of each type of gesture and all
gesture types combined across the conditions of robot and
human instructor. Since show and point gesture rates were
not normally distributed based on a Shapiro-Wilk test of
normality, we used a Wilcoxon signed-rank test for these
gestures. For all of the other gesture rates, we use a paired
sample Student’s t-test.

The means are higher for show and deictic gestures
with the robot instructor and are higher for point, conven-
tional, and total gesture rates with the human instructor
(see Table I). In comparing the robot and human instructor
conditions, there are no significant differences between rates
for show, point, deictic, conventional, and total gestures.
However, we do find that when calculating a matched rank
biserial correlation for the show and point gesture rates,
there is a small to medium effect size of 0.283 and -0.199,
respectively. Using a Cohen’s d for the other comparisons,
we get 0.065 for deictic, -0.122 for conventional, and -0.076
for total. All of these fall below the common standard for a
small effect size [37].

A. Age-Related Effects

To look at possible age-related effects on gesture, we
calculated a Pearson’s correlation coefficient between age
and each gesture type in each condition (see Table II and
Figure 2). In the robot condition, there was no significant
correlation found between age and rates for show, point, deic-
tic, conventional, and total gestures. In the human condition,
there was a significant correlation between age and gesture
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Fig. 2. Scatter plots showing the relationships between age and gesture rates
in each condition. Linear regression lines for each condition are displayed.

rates for show, deictic, and total.

None of the correlations between age and gesture rate
in the robot condition were significant (all ps>.05), but
the correlations for the show and total gesture rates in
the human condition are significant. Additionally, scatter
plots (Fig. 2) seem to show different relationships with age
across the two conditions for some of the gesture types. To
determine if these correlations are significantly different, we
use an online calculator [38] to compare the correlations.
The calculator does a test of the difference between two
dependent correlations with one variable in common by
converting the correlation coefficients to a z-score and then
computing the asymptotic covariance [39].

B. Within-subject effects

Since we had some indications that age is related to
differences in how much a child uses various gesture types
towards a robot versus a human, we expected to find some
negative correlations between gesture rates of the same type
across the two conditions. This would suggest that if a
participant frequently uses a gesture type with one instructor
type, then they use it less frequently with the other instructor
type. However, this generally was not the case.

Table III shows how rates of each gesture type with one in-
structor relates to rates of each gesture type with the other in-
structor. The only significant correlations are positive. Show
gesture rate with the robot significant correlates with point
(p=0.667), deictic (p=0.560), conventional (p=0.350), and
total gesture rates (p=0.486) with the human. Deictic gesture
rate with the robot significant correlates with point (p=0.597),
deictic (p=0.533), and total gesture rates (p=0.472) with the
human. Note that while show and combined deictic gesture
rates correlate with many rates with the human, the point
gesture rate with the robot does not correlate with any
gesture rates with the human. Conventional gesture rates
with the robot do not significantly correlate with any gesture
rates with the human. Total gesture rate with the robot
significant correlates with point (p=0.521), deictic (p=0.443),
conventional (p=0.381), and total gesture rates (p=0.486)
with the human.

We also conducted a series of repeated measures analysis
of covariance (RMANCOVA) to test for differences in how
often a child gestures towards a robot versus human instruc-
tor when controlling for age. Results for the RMANCOVA
on point, show, deictic, conventional, and total gestures rates
with age as a covariate are in Table IV. For total gesture
rate, there is a significant main effect of instructor type
(p=0.023) with a small to medium effect size (w?=0.037)
and a significant interaction with age (p=0.025) also with a
small to medium effect size (w?=0.036). For conventional
gesture rate, there is not a main effect of instructor type
(p=0.059) but a small effect size (w?=0.029), and there is
no interaction with age (p=0.069) but also a small effect
size (w?=0.026). For deictic gesture rate, there is not a main
effect of instructor type (p=0.188), and there is no interaction
with age (p=0.168). The effect sizes are less than small
(w?=0.006, w?=0.007). For point gesture rate, there is not
a main effect of instructor type (p=0.849), and there is no
interaction with age (p=0.966). The effect sizes are less than
small (w?=0.000). For show gesture rate, there is not a main
effect of instructor type (p=0.264) and less than a small
effect size (w?=0.005), and there is no interaction with age
(p=0.195) but a small effect size (w?=0.013).

VI. DISCUSSION

Our study examined children’s use of gestures with a robot
instructor and a human instructor during a learning task.
In contrast to most research in exploring children’s gesture

TABLE I
SUMMARY OF CORRELATIONS WITH AGE

Robot  Human Comparison

(r) (r) (z-score)
Child vocalization  -0.033 -0.208 1.534
Show rate 0.135 -0.351* 1.820*
Point rate -0.104 -0.068 -0.149
Deictic rate 0.070 -0.201 0.844
Conventional rate 0.071 -0.314 1.850*

Total rate 0.090 -0.354* 2.369**

*p < .05, # p < 01, ¥ p < 001



TABLE III
CORRELATIONS BETWEEN GESTURES RATES WITH HUMAN VS ROBOT

With Robot With Human Pearson’s r p
Point Rate - Point Rate 0.139 0.448
- Show Rate 0.184 0.313
- Deictic Rate 0.200 0.273
- Conventional Rate 0.161 0.380
- Total Gesture Rate 0.197 0.280
Show Rate - Point Rate 0.667*** < 0.001
- Show Rate —0.129 0.483
- Deictic Rate 0.560*** < 0.001
- Conventional Rate 0.350* 0.050
- Total Gesture Rate 0.486** 0.005
Deictic Rate - Point Rate 0.597*** < 0.001
- Show Rate —0.034 0.852
- Deictic Rate 0.533** 0.002
- Conventional Rate 0.347 0.052
- Total Gesture Rate 0.472** 0.006
Conventional Rate - Point Rate 0.343 0.055
- Show Rate —0.103 0.577
- Deictic Rate 0.274 0.130
- Conventional Rate 0.326 0.069
- Total Gesture Rate 0.321 0.074
Total Gesture Rate -  Point Rate 0.521** 0.002
- Show Rate —0.086 0.639
- Deictic Rate 0.443* 0.011
- Conventional Rate 0.381* 0.032
- Total Gesture Rate 0.441* 0.012

TABLE IV
REPEATED MEASURES ANCOVA WITH AGE AS COVARIATE

Cases SS  df MS F p w?
Total 3.684 1 3.684 5.731 0.023* 0.037
Total * Age 3.559 1 3.559 5.536  0.025* 0.036
Residuals 19.288 30 0.643
Conv. 1.278 1 1.278 3.869 0.059 0.029
Conv. * Age 1.175 1 1.175 3.558  0.069 0.026
Residuals 9.907 30 0.330
Deictic 0.292 1 0.292 1.813 0.188 0.006
Deictic * Age 0.321 1 0.321 1.992 0.168 0.007
Residuals 4.833 30 0.161
Point 0.004 1 0.004 0.037 0.849 0.000
Point * Age < .001 1 <.001 0.002 0.966 0.000
Residuals 3.562 30 0.119
Show 0.225 1 0.225 1.296 0.264 0.005
Show * Age 0.305 1 0.305 1.753  0.195 0.013
Residuals 5.212 30 0.174

production that use narratives to promote gesture production
(e.g., [5]) or requires children to gesture to communicate
(e.g., [40]), our task was not explicitly designed to elicit ges-
tures. Rather, children’s gestures were spontaneous and not
prompted by the instructor. The spontaneous emergence of
children’s gestures within a task that did not actively encour-
age gesturing indicates that gesture use may be significantly
prevalent in interactions design to elicit or support gestures,
highlighting the importance of systematically investigating
children’s gestures in various interaction settings.

We coded for three types of gestures: deictic, conventional,
and representational. We further broke deictic gesture down
into two sub-types: show and point. We found that children
rarely used representational gestures, and therefore we did

not include these gestures in our final analysis. Since the
number of gestures presented by a participant corresponded
to how long the participant took to complete the tangram
task, our analysis uses gesture rates (gestures/minute). When
comparing the rates of all gesture types, our results show no
significant differences between the rates at which children
gesture toward the robot and human instructors.

However, our results suggest that age influences how
frequently children gesture with the different instructor types.
When we compare gesture rates towards each instructor type
and control for age as a covariate, we see a significant
difference in the total gesture rates. Similarly, we also
find a significant difference with total gesture rates when
comparing the correlation between age and the total gesture
rates for robot and human. Looking at our scatter plots
(see Figure 2), we see that younger children in our sample
tended to use more gestures with the human instructor than
the robot, but older children were more likely to use fewer
gestures with the human instructor compared to the robot
instructor.

Some of these differences may be related to perceptions of
the robot, relative to the human. Prior research has shown that
adults have different views of cognitive abilities of humans
versus robots [41]-[43]. For children in our sample, the
younger children may perceive the robot to have insufficient
ability to help them. Older children in our sample may be
more willing to engage with the robot because they have
some belief that it can help. In examining the video for
participant A, who was 5-years old, we saw her turn to the
researcher in the room for help when working with the robot
instructor. Conversely, participant B, who was 7-years old,
engaged with the robot, asking it questions while using many
gestures.

It probably can be assumed that the older children in
our sample perceived the human instructor to be capable
of helping. However, they may have been less willing to
engage with the human instructor. Older children may be
more independent. Another reason could be that as children
get older, their social perceptions of the robot may change.
Prior research has shown that university students may seek
help from a human instructor less frequently than a robot
instructor because the robot is perceived to have a lower
social status than the human [44].

The age-related effects could also be related to how
difficult the task is for children at various ages, as is evident
in the strong negative correlation between the participants
age and time to complete the task. Children who found the
task less challenging had fewer reasons to engage with the
robot during the task. See Section VI-C for further discussion
on how gesturing may be related to children seeking help or
feedback.

A. Deictic Gestures

In the research on deictic gestures, there has been a
predominant focus on point gestures. Show gestures, which
direct the focus of attention on an object by holding it, are
distinct from pointing and are developed before pointing



[45]. Whereas a pointing gesture requires the receiver of the
gesture to redirect their attention, a show gesture is simpler in
that the object is presented in the recipient’s field of vision.
It can then be expected that show gestures could be more
commonly performed with a robot since there may be a belief
that the object needs to be held up directly in front of the
robot’s camera in order for it to see it.

In our study, we found a complex relationship between
types of deictic gestures. When combining the types of
deictic gestures, our results showed that the rate of deictic
gestures with the robot correlates with the rate of deictic
gestures with the human. However, through employing a
coding scheme to separately examine the rates for the show
and point gestures, we found that they did not correlate
across conditions. This means that a child’s rate of using
a show (or point) gesture with a human instructor did not
correspond with how they used show (or point) gestures
with a robot. Since the overall rates of deictic gestures did
correlate, this result seems to indicate that a child may have
been more inclined to use one type of deictic gesture with
one instructor type and shift to the other type with the other
instructor. In fact, we saw that point gesture rates with a
human instructor correlated with the show gesture rates with
the robot, suggesting that a child may have used a show
gesture with a robot when they used a point gesture with
a human. The pattern is exemplified by participant B, who
had a point rate of 2.02 gestures/min. and show rate of 0.00
gestures/min. with the human instructor and a point rate of
0.31 gestures/min. and show rate of 2.77 gestures/min. with
the robot. Future research should continue to examine both
types of deictic gestures in child-robot interactions to fully
capture children’s use of gesture in this context.

Our results also showed there was a significant difference
in the correlations between age and show gestures across
instructor types. The older the child was, the less frequently
they tended to use a show gesture with a human instructor.
The significant difference in the correlations means that age
is more related to show gestures with a human than with a
robot. Age at least partially explains the differences in how
a child used a show gesture with one instructor but not the
other. However, in our sample, age did not show any relation
to point gesture rates, and thus it remains unknown what
factors contributed to a child’s different uses of pointing ges-
tures. To gain further understanding of the child’s behavior,
it will be important to examine how individual differences
relate to a child’s behavior with a human versus a robot [46].

Our findings indicated that show and point gestures had
different relationships in a learning setting and did not nec-
essarily follow the same patterns of deictic gestures overall.
This result emphasizes distinguishing between the types of
deictic gestures is needed to better understand children’s use
of deictic gestures. Our coding scheme made this distinction.
For future research to lead to a better understanding of
the factors contributing to a child’s use of deictic gestures
with a robot, coding and analysis needs to use similar
coding schemes that distinguish between the types of deictic
gestures.

B. Conventional Gestures

Conventional gestures are less frequently studied in the
context of human-robot interactions, but our study found that
children regularly exhibited spontaneous use of conventional
gestures like head nods and shrugs. Though there was
no significant difference in rates of conventional gesture
across instructor type, we cannot conclude that children used
these gestures in a similar fashion with a robot as with a
human since the gesture rates did not significantly correlate
(p=0.069). Additionally, we see a small effect size in our
RMANCOVA for conventional gesture rates. The small effect
size and low significance values suggest that we might see
a significant trend with a larger participant pool.

However, we found differences in conventional gesture
rates when accounting for age. For the correlations between
age and conventional gesture rates, we found a significant
difference in the correlations for the robot and human con-
ditions. This means that age was more related to conventional
gesture rates with a human than with a robot. Additionally,
the conventional gesture rate with a robot did not signifi-
cantly correlate with the rates of any of the gesture types with
the human. With this data, it remains unclear what factors
are contributing to how often a child gestures with a robot.

In reviewing the videos for a few participants, we were
able to speculate that one of the factors contributing to the
use of conventional gestures was whether the child desired
to use the gesture in substitution for a vocalization. Children
nodded or shook their heads in response to the instructor’s
question, and the child does not accompany the gesture
with any vocalization. For example, participant C shook his
head when the human instructor asked if he had all of the
pieces, but he vocalized a response to the same question
when the robot instructor asked it. Conventional gestures are
interesting in that their established meanings allow them to
be used in replace of language [47], but our current analysis
did not help us predict whether or not the child used a
conventional gesture. Future work may need to consider how
a child’s individual characteristics relate to their gesturing
behavior, as recent results have shown an influence of these
characteristics on other social behaviors such as gaze patterns
and social referencing [46].

Other conventional gestures were used to express confu-
sion, uncertainty, or contemplation. For example, participants
D and E shrug when unsure if they were correctly following
the robot’s instruction on how to move a piece. Participant
A waved her arms over her head when she was unsure and
waited for the instructor to give her feedback. Participant B
moved her arms to her sides or hips when appearing to be
uncertain and brought her hands to her face when thinking.
She presented these gestures with both instructors, though
more frequently with the robot. While most HRI research
on conventional or symbolic gestures focus on head nods
or shakes, these examples show there are other conventional
gestures that children naturally use to communicate with the
instructor. Importantly, they were communicating informa-
tion about their mental state and whether they needed the



instructor’s feedback. These are critical cues for a social
robot to understand when assisting a child.

C. Implications for HRI Design and Applications

This is the first study in HRI to examine how children use
different types of gestures towards a robot and human in-
structor. Our results provide evidence that children naturally
and spontaneously use show, point, and conventional gestures
when working with a social robot. Since children’s gestures
were not accompanied by speech, the only way for the robot
to understand what the child was communicating is for the
robot to understand the child’s gestures. HRI researchers and
designers cannot solely rely on past research on children’s
gestures, since most of that research explores how children
gesture with a human partner. Our results suggest that how
children gesture towards humans may not necessarily match
how they will gesture with a robot. Thus it is critical we
have more research addressing children’s use of gestures with
robots, and our research serves this goal by identifying the
types and frequencies of gestures that children use.

In closely examining the videos of gestures produced by
children in our study, we noticed that a number of the
gestures were used to express confusion or to seek help.
Interestingly, many of these examples also did not have
co-speech. The child was expecting the instructor to be
able to recognize and interpret their nonverbal behavior. For
example, when participant D was learning with the robot
instructor, she paused to point at the puzzle when she needed
to direct the robot’s attention to it because she needed help.
She did not say anything, only pointed at the puzzle while
looking at the robot. Prior work has shown the value of
interpreting these types of gaze patterns to recognize when
adult users need or want help from a robot [31], [48], and we
now have reason to believe that in addition to gaze patterns,
deictic and conventional gestures would have a similar value
with child populations.

Gestures play a key role in supporting synchronization
and mutual attention, essential features for the development
of rapport [49]. As such, gestures have been shown to be
related to rapport in human-human interactions [50], human-
virtual agent interactions [51], and human-robot interactions
[4], [52]. While prior research with virtual agents and robots
focused on gestures performed by the artificial agent, it is
reasonable to conclude that recognizing a child’s head nod
would support the child’s sense of feeling in sync with the
robot and recognizing their pointing to the puzzle facilitates
mutual attention.

D. Limitations

A human instructor has more expressive capabilities than
a social robot, which could incline a child to use more social
behaviors with a human as opposed to a robot. To control
for this, the human instructor in our study was trained to
limit their responses to the behaviors that the robot was
programmed to perform. With the human instructor not using
voice inflections, large gestures and few facial expressions,

children may have found the human instructor to be less
engaging.

We recognize that conventional gestures are highly cou-
pled with culture, in both their semantics and the fre-
quency with which they are used. For example, Japanese
speakers produced more nodding during a robot’s speaking
than English speakers in a human-robot interaction, but no
differences in the frequency of head gestures was found in
human-human interactions [53]. Future work could examine
how children across the world differ in their rate, size, and
preferred mode of gesturing to robots.

VII. CONCLUSION

We provide evidence that children spontaneously use a
variety of gesture types with a robot. We also find that the
children’s rate of gesturing with a robot does not necessarily
match their rates of gesturing with a human instructor. Age
shows to be a factor in how much a child gestures with a
human instructor, but age is not associated with gesturing
rates with a robot instructor. We also highlight the need for
a coding scheme that distinguishes between gesture types.
Through the application of our gesture coding scheme we
are able to identify differences in how children use show
gestures versus point gestures. Finally, given the lack of
existing research in children’s gestures in HRI, our work
lays a foundation for further investigation into how and why
children gesture with robots in a learning environment.
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