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1 Introduction
Theory of mind (ToM) is considered to be the ability to un-
derstand that others can have differing beliefs, knowledge,
desires, and intentions. ToM reasoning, in turn, is the in-
ference of any one (or more) of these aspects of cognition
in another agent. In much current work, such reasoning is
done based on observations of the agent’s actions. The rep-
resentation of the action observations is varied across the
literature, and can include an agent’s trajectory in 2D or 3D
space, symbolic or predicate representations of their actions,
or even a textual story describing what the agent is doing.

In this work, we instead focus on situations where such
observations, alone, are not sufficient for ToM reasoning.
There are many real-world analogs of this, such as inferring
an agent’s intent when they provide noisy or underspecified
instructions (Ying et al. 2024), or when observations alone
are not sufficient to disambiguate between different hypothe-
ses of the agent’s task.

To this end, we present a benchmark task and associated
dataset involving Tangram puzzles. In such puzzles, differ-
ent baseline polygons are arranged to form a larger, tar-
get shape. In part because of the intricacy of these puzzles,
effective ToM reasoning is challenging, if not impossible,
without knowledge of the task. In addition to supporting
complex ToM reasoning, the accompanying dataset facili-
tates the investigation into how ToM reasoning connects to
the subsequent actions of the ToM reasoner.

2 Current ToM Evaluations
Many machine ToM evaluations focus on predicting an
agent’s intentions based on observations of their actions,
such as trajectories of their movement in a 2D grid world
represented at either the pixel or lifted symbolic level (e.g.,
Shum et al. 2019; Rabkina and Forbus 2019; Rabinowitz
et al. 2018; Nguyen and Gonzalez 2020, see Mao, Liu, Ni,
Lin, and He (2024) for comprehensive list). For example,
the stag-hunt game (Shum et al. 2019; Rabkina and Forbus
2019) involves predicting which target each observed agent
intends to capture, and whether any agents intend to cooper-
ate to capture a larger target. Observations consist of discrete
agent movements (i.e., whether each agent moved up, down,
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left, or right). Due to the simplicity of the grid world and
constraints of the task, the lower-level intentions that can be
inferred from these movements (i.e., moving toward or away
from a target) map directly to the higher-level intentions of
cooperating or capturing a specific target. Similarly, the food
truck problem (Baker, Saxe, and Tenenbaum 2011) involves
agents attempting to purchase food from one of several food
trucks parked on a 2D map. The associated ToM task is to
predict which food truck each agent is targeting based on
their movements. While movement in the food truck do-
main is continuous, and therefore less constrained, the task
nonetheless primarily involves reasoning about which food
truck(s) each agent can see and/or is moving toward. Such
tasks capture the inferences that can be made based off of
agents’ movements with respect to their surroundings, but
are not representative of broader ToM reasoning.

The recent popularity of large language models (LLMs)
has also ushered in text-based ToM benchmarks. These
largely fall into one of two categories: narrative descrip-
tions of movements similar to the 2D world benchmarks de-
scribed above (e.g., Jin et al. 2024; Shi et al. 2024; Verma,
Bhambri, and Kambhampati 2024) or textual variations on
the Sally-Anne false belief task (Baron-Cohen, Leslie, and
Frith 1985). In the FANToM false belief benchmark (Kim
et al. 2023), the LLM is told a story in which a character
is not present for part of a conversation. The LLM is then
asked questions about the character’s knowledge of the con-
versation, including information that was shared while they
were not present. Xu et al. (2024) similarly target the story
false belief dimension of ToM reasoning in LLMs, while Ne-
matzadeh et al. (2018) and Le, Boureau, and Nickel (2019)
do so for other neural models and Hiatt and Trafton (2010)
and Rabkina et al. (2017) do so for ToM models in cognitive
architectures. Notably, all of these evaluations focus on rea-
soning based on descriptions of the agent’s actions: where
they moved to or whether they were present.

Intent recognition from actions has more explicitly been
studied as goal and plan recognition (see Mirsky, Keren, and
Geib 2021). However, these evaluations are not typically
framed as ToM problems. One exception is the Minecraft
dataset presented in Rabkina et al. (2020) and Rabkina et al.
(2022). This dataset combines reasoning about an agent’s
movements and knowledge about the task to predict its
goals. For example, most goals can be accomplished by the



Figure 1: Screenshot of a nearly complete rabbit puzzle.

agent moving towards a farm, but information about har-
vested items must be combined with task knowledge to rea-
son about which item the agent is trying to obtain. However,
it does not require explicit reasoning about the observed
agent’s knowledge or beliefs.

3 Tangrams As Alternative Evaluation
We propose a new benchmark that requires reasoning over
beliefs and knowledge. The benchmark uses a new Tangram
dataset, which consists of observations of a child assembling
tangram puzzles with the assistance of either a social robot
or human instructor. Tangram puzzles are constructed from
seven basic pieces that are assembled to resemble an object
(e.g., cat, rabbit; see Fig. 1). The acting and observing agents
need to know the structure of the resulting puzzle (i.e., where
do all the puzzle pieces belong). The observing agent (i.e.,
the instructor) has this knowledge, but the acting agent (i.e.,
the child) may have incorrect beliefs regarding positions of
the pieces. Additionally, the position of some pieces is am-
biguous because there are pairs of pieces of the same size
that may be swapped for each other. When the observing
agent recognizes what the child is doing or any misconcep-
tions they may have, it provides verbal assistance. The com-
plexities of this task allows our dataset to support goal recog-
nition, plan recognition, false belief reasoning, and observer
intervention inference.

The dataset is based on videos of child-robot interactions
collected as part of a previous study (redacted).For each in-
teraction, we hand-coded the videos to record a series of ob-
servations. A single observation includes the ID of the in-
teraction, a timestamp, the target puzzle, the structure of the
puzzle, and the instruction provided (if any). The instruc-
tion is represented in three forms: a transcription of what
the robot or human said, a symbolic representation of the
instruction, and the intended change in the puzzle structure.

To represent the structure of the puzzle, we developed a
representation designed to model the spatial relationships
between 2D, non-overlapping, polygons. The representation
is an extension of RCC-8 that expands upon the types of
relationships defined in the “externally connected” relation
(Randell, Cui, and Cohn 1992; Cohn et al. 1997). Polygons
are represented as a set of edges, where each edge is a pair
of vertices. Our representation uses these edges and vertices
by describing all 9 possible relations between edges and ver-
tices. For example, Fig. 1 includes a “vertex connection” be-
tween vertices of the yellow square and the green triangle.
Since the set of representations are mutually exclusive and
collectively exhaustive, we can safely assume that any unde-

fined relation is not present.
This dataset and representation support benchmarking the

following types of reasoning:
Goal recognition: The first application of this dataset in-
volves inferring the goal of the task, where the goal is de-
fined as which puzzle the child is assembling.
Plan recognition: The dataset can be used to infer next steps
in the child’s plan, based on the steps they have taken so far.
This implicitly requires goal recognition.
False belief reasoning: The dataset may be used for reason-
ing about false beliefs. Each incorrectly placed piece suggest
the child may have a false belief regarding the relation be-
tween that piece and the puzzle. Perhaps more interesting is
that a child may be working with the false assumption that
all puzzles pieces are initially provided. However, one piece
is always hidden. The observing agent needs to recognize
when the child is working with this false belief if it were to
help in rectifying the belief.
Observer intervention: Decision-making for intervention
requires at least reasoning about the child’s goals and in-
tentions. The child may also have some false beliefs regard-
ing the puzzle or the pieces. For effective intervention that
aligns with a students needs and preferences, the observer
may need to reason about a child’s desire for help. The agent
may also want to reason about when to help or how much
help to give, since helping too soon or too much may nega-
tively impact the child’s autonomy (Wilson et al. 2018; Wil-
son, Aung, and Boucher 2022).

4 Discussion
A significant amount of existing benchmarks and evaluation
scenarios involve a common pattern of observing an agent’s
trajectory in relation to some goal locations or textual stories
about what an agent is doing. Our dataset introduces new
challenges by requiring knowledge-based reasoning about a
task and the spatial arrangement of objects to infer the in-
tentions of another agent. This dataset, featuring sequences
of actions to assemble Tangram puzzles, also supports rea-
soning about a child’s beliefs regarding the task. Like pre-
vious work that has used plan recognition to decide when
or how to intervene (Weerawardhana, Whitley, and Roberts
2022; Freedman and Zilberstein 2017), our Tangram dataset
allows for a connection between ToM and intervention.

Many real world applications of ToM involve observing
an agent in a physical environment. While the Tangram
dataset does not include data that may be used to reason
about physical trajectories, there is a physical component
to the observations that requires reasoning about spatial ar-
rangements instead.

The Tangrams dataset is not without its limitations. Only
two goal puzzles (rabbit or cat) are currently included. Addi-
tionally, the dataset includes data extracted from videos. We
cannot provide the videos themselves due to the presence of
minors in them.

Nonetheless, the Tangram dataset has qualities that will
help push forward AI for ToM. The AI community has made
incredible gains in modeling and simulating ToM, and there



is now a great opportunity to expand these capabilities to
consider additional aspects of ToM. Most importantly, there
is a need to recognize the role of the background or task
knowledge held by the observer and the acting agent.
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