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Abstract— Assistive robots will be more effective if they can
accurately reason about the intentions and beliefs of the user
(i.e., have Theory of Mind (ToM)). ToM benchmarks allow us
to examine how well an artificial agent (e.g., robot) is able to do
ToM reasoning in a given scenario. However, there is a need for
ToM benchmarks that are more representative of the challenges
faced in assistive robotics. Existing benchmarks from AI and
HRI make simplifying assumptions, such as simply defined
goals, plans that are indicative of goals, and no user errors.
To address the challenges from relaxing these assumptions, we
propose the Theory of Mind of Children Assembling Tangrams
(ToMCAT) dataset. The data is derived from videos of children
building tangram puzzles while being assisted by a social robot.
As a baseline benchmark, we evaluated two approaches for
how well they can recognize which puzzle this child is building
based on a single observation. Analogical reasoning correctly
recognized the puzzle more than 75% of the time and had
perfect accuracy for puzzle states that were close to complete.
However, an out-of-the-box commercial LLM correctly recog-
nized the puzzle only 60% of the time and was accurate on
less than 80% of the completed puzzles. Our results suggest
that the ToOMCAT dataset offers challenges for recognizing the
intended puzzle of a child. Furthermore, the dataset provides
opportunities to examine additional ToM reasoning capabilities.
Overall, the TOMCAT dataset provides a useful benchmark
to facilitate the advancement of ToM reasoning for assistive
robotics.

I. INTRODUCTION

In situations where assistive robots are tasked with helping
a human complete a task, it is beneficial and often necessary
to have the robot understand what the human is trying to
accomplish (i.e., understand the human’s goal), predict what
they will do next, and infer what assistance would help
them progress in the task. Each of these activities is central
to classic Theory of Mind (ToM) challenges. ToM is the
capability to understand that others can hold differing beliefs,
knowledge, desires, or intentions [1]. ToM reasoning, in turn,
is the inference of any one (or more) of these aspects of
cognition in another agent.

To evaluate how well an artificial agent can use ToM
reasoning, there is a growing interest in community datasets
that can provide benchmarks of ToM performance (e.g., [2],
[3], [4], [5], [6]). These benchmarks help to standardize and
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Fig. 1. Illustrations of two Tangram puzzles using the same individual
pieces, but forming different animals: a rabbit (left) and cat (right).

compare ToM approaches. However, the majority of datasets
underlying these benchmarks make one (or more) of several
simplifying assumptions. First, many assume that the goal
of the agent can be represented as a single expression (e.g.,
inventory_contains(bread) for a Minecraft-like domain, or
at(truckl) for a domain involving predicting what food
truck an agent is going to). In addition, these domains are
often restricted to include predictable and/or legible plans. A
predictable plan reduces ambiguity by having few possible
plans for a goal, and a legible plan reduces ambiguity by
having few goals that correspond to a given plan [7]. For
example, walking the only shortest path to a food truck is a
predictable plan, while a robot reaching in a direction and has
only one reachable object in the direction is a legible plan.
Conversely, many real-world tasks that an assistive robot
would be expected to reason about are neither predictable
nor legible.

We make two main contributions. First, we present a new
ToM dataset in the domain of Tangram puzzles, Theory of
Mind of Children Assembling Tangrams (ToMCAT), that
pushes the boundary of these prior limitations in several
ways. Tangram puzzles are puzzles that are solved by arrang-
ing different baseline polygons to form a larger, target shape;
two such puzzles are shown in Fig. I. While assembling
such puzzles, there is a very high number of possible paths
to completion: the user can place any one of 7 pieces
in any orientation, and in any relation to pieces that are
already on the board. Goals (i.e., target shapes) must also
be described using multiple expressions, denoting the spatial
relationships of adjacent pieces. Furthermore, users (in this
dataset, children) often make mistakes, making it even harder
to infer which target shape they are assembling before the
puzzle is complete. All of this means that TOMCAT offers a
ToM task that is more similar to the kinds of tasks assistive



robots are likely to perform in the real world.

Second, we evaluate two techniques—LLM reasoning and
analogical ToM—on the task of inferring which Tangram
puzzle a child is assembling (cf. Fig. I). Recent advances
in LLM technology suggest that LLMs can perform spatial
reasoning [8] and work well for various ToM tasks (e.g.,
[2], [9]). Similarly, analogical reasoning has been shown to
effectively reason about both spatial relationships [10] and
ToM [11]. Our results indicate that recognizing the child’s
goal is challenging for an LLM, but relatively straightforward
for the analogical approach. The evaluation demonstrates that
the TOMCAT dataset offers a non-trivial ToM task, as well
as provides initial baselines for future comparison of ToM
applied to TOMCAT.

II. BACKGROUND ON TOM BENCHMARKS

While ToM benchmarks have standardized the evaluation
of ToM approaches, many benchmarks make several simpli-
fying assumptions that limit how well they evaluate the ToM
reasoning abilities of assistive robots.

A. Goal Complexity

Often, ToM benchmarks are framed as goal recognition
problems, with the reasoner’s main inference being the goal
state of the observed agent. Unlike other aspects of ToM
(i.e., desires, beliefs, etc.), goals are observable, and thus can
be extracted from the dataset as ground truth. In fact, even
when the stated task is to infer a different aspect of ToM,
evaluation is typically based on the goal state (e.g., the food
truck domain [12], where stopping at the location of a given
food truck serves as a proxy for the user’s preference).

Furthermore, goal representation is sometimes simplistic.
For example, in stag-hunt [13], agent goals, such as the
identity of the hunting target or the intent to collaborate,
are represented as a single expression or grid coordinate
pair. Similarly, the goal in the food truck domain is often
represented as location coordinates [12]. While goal states
simplify the inference task, they may not require reasoning
about the entire scene or, crucially, the internal state(s) of
the observed agent(s).

B. Plan Predictability and Legibility

Many ToM benchmarks also make simplifying assump-
tions about how goals are achieved. For example, the food
truck domain [12] assumes that an agent: has few possible
paths to it’s goal from it’s current location, always behaves
correctly, and it’s destination maps directly to their goal.
Many ToM domains make similar assumptions, allowing
straightforward inference of agent intentions solely from
movement in a grid world (e.g., [13], [14], [15], [16]; see
[17] for a detailed list).

Near-perfect predictability of goals from observed move-
ments significantly simplifies the problem of ToM reasoning,
and is not reflective of the kinds of problems assistive
robots are likely to face in the real world. In fact, full ToM
reasoning requires a deeper understanding of the internal
states motivating an agent’s actions, rather than focusing
observable motion trajectories.

C. Noisy Data and User Errors

In addition to being predictive, observations are usually
assumed to be reliable. The observer is unobstructed in their
observations of the other agent (e.g., moving a book to an-
other room [2] or reaching for an object [18]). Furthermore,
it is generally assumed that the agent’s actions are always
purposeful and correct, as there is no reason to believe that it
has imperfect information or does not know what it is doing.

There are several exceptions to this. For example, in one
study, a social robot is tasked with recognizing the reason a
human teammate took an incorrect turn and offering assis-
tance [19]. Similarly, false belief benchmarks (e.g., [3], [20],
[21]) assume that the observed agent is missing important
information and might therefore make mistakes. However,
these benchmarks are typically represented as stories, and
do not directly translate to ToM reasoning on the fly.

The Minecraft dataset presented in [22] and [6] explicitly
introduces noise into observations of an agent performing
a crafting task in the game. There are inherently multiple
ways to accomplish each possible task (e.g., ingredients can
be collected in different orders) and the agent may skip items
because it is already in their inventory. Performing ToM
in this dataset therefore requires reasoning about both the
agent’s movements and knowledge about the task. Yet, the
dataset is primarily a goal recognition task, with goals repre-
sented via a single expression (e.g., in_inventory(bread)),
thus still making simplifying assumptions.

In contrast, a Tangram puzzle possesses complexity along
each of the three axes listed above. A puzzle’s goal, given
to human solvers as the visual depiction in Fig. I, are
computationally represented as a (sometimes large) set of
states that specify the relationship of all of the individual
target pieces to one another. They also have many possible
paths to the successful completion of the goal, since pieces
can be placed in any order. And, finally, people typically
make many mistakes when performing these puzzles; this is
especially true for children, as we will see below.

III. TANGRAM PUZZLES: THE PROBLEM
DOMAIN

Tangram puzzles are solved by arranging different baseline
polygon-shaped pieces to form a larger, target shape (Fig. I).
There are 7 pieces to each puzzle: 2 large triangles, 2 small
triangles, and 1 each of a medium triangle, square, and
parallelogram. Tangram puzzles may be employed to teach
geometry to young children [23]. Since spatial reasoning
skills have been shown to support the development of early
mathematics skills [24], spatial assembly tasks, like tangram
puzzles, are used to assess early geometric and spatial
reasoning in young children [25].

Despite traditionally being a child’s puzzle, intricacies of
these puzzles contribute to some challenges for effective ToM
reasoning. Although tangram puzzles are inherently visual,
it is very challenging to infer a puzzle solver’s goal until the
puzzle is nearly complete. This is partially true because of the
redundancy of shape placement and orientation that occurs in
many tangram solutions. More so, it is challenging because



of the adjustments puzzle solvers employ while assembly the
puzzles, both to fix errors previously made, as well as to fine-
tune the alignment of shapes relative to one another. When
the adjustments are incorrect, understanding the child’s intent
is especially challenging because the purpose of their actions
becomes ambiguous.

Tangram puzzles can be challenging Theory of Mind
problems for an observer of the child assembling the puzzle
pieces. For an observer who is assisting the child, the
observer would at least need to know what puzzle the child
is intending to build. The observer may use this knowledge
to determine how to best assist the child, which may require
understanding what part of the puzzle the child is working
on. When a child makes a mistake and misplaces a piece,
if the observer were to infer why the child believed that the
piece positioning was correct, the assistance could help the
child correct their understanding instead of simply telling
them what needs to be fixed.

IV. TANGRAM BENCHMARK

We propose a new benchmark measuring a robot’s ability
to reason about a user’s task. The benchmark uses a new The-
ory of Mind of Children Assembling Tangrams (ToMCAT)
dataset!, which consists of observations of a child assembling
tangram puzzles with the assistance of a socially assistive
robot. The child is given one of two illustrations (see Fig. I)
of a completed puzzle and is instructed to build the puzzle
shown in the illustration.

The dataset represents a situation in which the child and
robot are using knowledge of the task but the knowledge is
not necessarily shared. The robot knows how the tangram
pieces fit together to create each of the completed puzzles.
Since the robot also knows the size of each piece, it can
reason about the interchangeability of pieces of the same
size. While the child has an illustration of the puzzle, that
illustration is in black and white, which often results in insuf-
ficient knowledge about each piece and how the pieces need
to relate to each other to build the puzzle. For example, the
red medium triangle often causes confusion. Many children
try to use the triangle where a larger or smaller triangle
should be used. Intermediate states of the puzzle as it is
assembled, interchangeable pieces, and naturally occurring
errors are features that other tangram-related datasets (e.g.,
KiloGram [26]) do not have.

In the current work, we use this dataset to benchmark
how well Al reasoners can recognize which puzzle the child
is assembling. Recognition of the puzzle would then enable
the robot to make further inferences requiring ToM, such
as inferring which part of the puzzle the child is working
on, what the child may do next, and any misconceptions
the child has that interfere with their ability to complete the
task. Although the dataset we provide supports benchmarking
these other reasoning steps, we do not currently assess how
Al reasoners perform on these subsequent processes.

Thttps://github.com/FandM-CARES/ToMCAT

TABLE I
SAMPLES FROM TOMCAT DATASET
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Fig. 2. An illustration of correct and incorrect relationships between pieces.
The intended puzzle is a cat, and a medium triangle is used in place of a
small one. This results in 1 correct relationship between the blue triangle
and the square. The other two relationship are incorrect.

A. Data Collection

The dataset is based on videos of child-robot interactions
collected as part of a previous study [27]. Each participant
(N = 34), aged 5 to 8 years old, assembled either a rabbit
or cat puzzle with the help of a Misty robot. The remotely
controlled robot provided social assistance to the child by
providing feedback and encouragement [28]. The videos
are from a camera mounted on the wall above the robot,
providing a top-down view of the puzzle that is not disturbed
by the movement of the robot. For each interaction, we
reviewed the videos to identify when the state of the puzzle
has changed and the child is not still moving pieces of the
puzzle. Each new state of the puzzle was then recorded as a
new observation (see Table I for samples from the dataset).
The observed puzzle state was recorded in two forms: (1)
A single frame of the video was transformed to account
for projection and cropped to isolate the portion of the
image with the puzzle. (2) A symbolic representation of the
relationships between the puzzle pieces (cf. next section for
details on the representation). The symbolic representation
was manually encoded, and to ensure accuracy, each video
was reviewed by at least 2 annotators.

We also annotated each observation with two measures
of puzzle correctness: (1) The number of correct puzzle
relationships in the observation (2) The number of incorrect
puzzle relationships. Fig. 2 shows an example from the
dataset that has 1 correct relationship and 2 incorrect ones.
In Table I, the + and - columns represent the correct and
incorrect relationships counts, respectively.



B. Puzzle Representation

To represent the structure of the puzzle, we developed a
novel representation designed to model spatial adjacency re-
lationships between 2D, non-overlapping, convex polygons.
The representation is an extension of the Region Connection
Calculus and expands upon the types of relationships defined
in the Externally Connected (EC) relation [29], [30]. Poly-
gons are represented as a series of vertices, and each edge
is a pair of vertices. Our representation uses these edges
and vertices to describe all 8 possible relations between
adjacent edges and vertices (see Table II). Since the set
of representations are mutually exclusive and collectively
exhaustive, we can safely assume that any undefined relation
implies that the polygons are not adjacent.

The picture of the target puzzle can be succinctly repre-
sented as a set of relationships between adjacent pieces. This
condensed representation abstracts the problem away from
the pixels available in each frame of a video and disentangles
the robot’s reasoning about the puzzle from the complexities
of the robot’s vision system.

C. Task and Dataset Analysis

The tangram task provides a small (7-piece), well-defined
task, but it also involves a relatively high degree of com-
plexity. Both the cat and rabbit have 8 relationships between
pieces in a correctly completed puzzle. Considering the
interchangeability of some of the pieces, there are 4 correct
arrangements of the pieces for each target puzzle, resulting
in a total of 8 possible goal solutions.

Since the pieces can be assembled in any order, there are
7! optimal plans to place the pieces to complete the task. The
complexity of the problem is also related to the large number
of ways in which pieces may be related to each other. Since
pieces can be related through each of their sides and vertices
using the 8 predicates defined in Table II, there are over 900
possible relationships between all of the puzzle pieces.

Some of the complexities of the task are apparent in
our dataset. The dataset consists of 34 children assembling
either a cat or rabbit puzzle (15 cat, 19 rabbit). There are
436 observations in total (avg 12.8 obs/child). The quickest
puzzle assembly resulted in 6 observed state changes, and
the slowest puzzle assembly had 42 observations.

The children took an average of nearly 13 steps to as-
semble 7 pieces; many children made suboptimal choices.
Furthermore, children tended to improve the puzzle more
the closer it got to completion. To start the puzzle, only
47% (16/34) of the children correctly paired the first two
pieces. They continued to have difficulty in the early stages
and made improvements to the puzzle only 49% of the time
while the puzzle had 2 or fewer correct relations. With 3 to 5
correct relations in the puzzle, children improved the puzzle
58% of the time, and with 6 or more correct relations, they
improved the puzzle 70% of the time.

V. EVALUATION

Our evaluation measures how well two approaches can
determine which puzzle the child is building. We compared

TABLE I
POLYGON ADJACENCY RELATIONSHIPS. DARKER POLYGONS ARE THE
POINT OF REFERENCE AND ARE DEFINED FIRST IN THE RELATION.

Name Representation Example Image
Vertex -
Connection (ve vs vr) Q\\ W
Vertex Edge (vec vs €)
Connection s €l
Tangential
Equal (teg es et)
Tangential
Overlapping (to es e vs vr)

Tangential One

Vertex Included (tovi es e vs v)

Tangential One
Vertex Included
Inverse

(tovii e; es vy vs)

Tangential

Edge Included (tei es er)

Tangential
Edge Included
Inverse

(teti e; es)

analogy approach as well as a commercial LLM performs
on the same task. The performance of each approach is
presented as a baseline for future work to build upon.

A. ANALOGY FOR THEORY OF MIND

Analogical reasoning is a cognitive process by which pre-
vious knowledge is compared to the current problem in order
to apply prior decision making, inferences, conclusions, etc.
to the current situation. In addition to being a key aspect of
human reasoning, analogy has a wide range of applications
in robotics and computational systems. It has been used to
generalize human input in human-robot-interaction scenarios,
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Fig. 3. Diagrams of mappings between structures. The left is an illustration
of 3 pieces and the corresponding representation displayed as a graph. The
right is a representation of the cat solution. The shaded elements represent
the elements that are mapped to each other. Some elements are not shown
since the full representation is too large to show here.

[31], [32], amplifying costly human demonstrations; it has
also been successfully applied to geometric reasoning [10],
goal reasoning [6], and theory of mind [11]. Given these prior
successes, especially on theory of mind tasks, we investigate
here how well analogy infers the child’s target puzzle for the
ToMCAT dataset.

In order to determine what prior knowledge applies to the
current situation, analogical reasoning first needs to align any
relevant prior scenarios with the current one. The primary
step in this alignment is finding elements (e.g., expressions,
relations, attributes, or patterns thereof) that are similar in
the two scenarios and creating a mapping between them.
The more mappings that there are between scenarios, the
higher the scenarios’ similarity [33]. In Fig 3, the 11 shaded
elements are mapped because they share similar structures.
This alignment process serves two purposes: (1) it allows
reasoning about scenarios that don’t have the exact same
representation as the current scenario; and (2) it allows the
reasoning process to identify the most similar scenario(s) to
the current one. Any underspecified elements in the current
scenario, such as what action to take next, can then be
inferred from the corresponding element in the prior sce-
nario. Here, we used the Structure Mapping Engine (SME)’s
implementation of this process. [34].

In the tangram task, the current scenario (i.e., the current
state of the puzzle assembly) was represented as expressions
specifying the attributes of each piece (e.g., color, shape,
relative size), as well as expressions specifying the relation-
ships of the shapes’ positions, as discussed in Section IV-
B. The puzzle’s final shape (cat and rabbit) was similarly
represented, but did not specify colors for the redundant
triangles in order to encompass all possible solutions.

When using analogical reasoning to infer the child’s target
puzzle, each target goal (i.e., cat, rabbit) was compared to the
current scenario. The goal that had greater analogical simi-
larity with the current scenario was selected as the inferred
puzzle solution; intuitively, this was the goal with the most

interconnected pieces in common with the current scenario.
Each scenario was tested independently; prior scenarios were
not taken into account when making each inference.

B. LLM Comparison

Since the use of LLMs has rapidly become a common
approach for implementing advanced reasoning capabilities
in social robots, we compared the performance of analogy to
a commercial LLM. Our evaluation used the API interface to
Claude Sonnet 3.5, with no fine-tuning. For a straightforward
comparison with our analogy-based approach, we used the
same logical representation of each puzzle and observation
state. We chose not to convert these representations to
natural language because the logical representation was more
concise and did not risk having any ambiguities inherent to
using natural language.

The initial prompt to the LLM consisted of three parts:

o A description of the problem: “We are trying to infer
the puzzle that a person is building based on how
the pieces are connected to each other. In order to
communicate these connections, we are using first-order
logic to represent the relationship between tangram
puzzle pieces.”

« A natural language description of each of the predicates
used in the logical description.

e A description of the LLM’s task: “Your task is to
interpret whether the participant is making a cat or
rabbit puzzle based on the given series of connection.
Only answer Cat or Rabbit, EVEN IF YOU CAN’T
INTERPRET THE REPRESENTATION.”

For each observation state, we include the prompt “Which
puzzle is being built if the current arrangement of pieces is
the following:”, followed by the the same logical description
of the observation state that is given to analogy.

Using a temperature setting of 0.8, we found some vari-
ability in the responses from the LLM. As a result, we made
3 independent requests to the LLM and used a best of 3
voting scheme to determine the model’s final inference. As
with analogy, each observation state is tested independently.

C. Results

The overall accuracy of analogy was 75.2%, and the
accuracy of the LLM was 60.1%.

To further investigate how well each algorithm performs,
we analyze their accuracy relative to the number of correct
and incorrect expressions in the puzzle. A completed puzzle
has 8 correct expressions and no incorrect expressions. An
expressions is considered correct if it can be found in a
solution to the puzzle. For interchangeable pieces (e.g., the
small and large triangles), we consider the expression to be
correct if it involves a piece of the correct size, regardless of
the color. For example, for the cat, the blue and pink triangles
that form the ears can be on either side of the yellow square.

For every observed state, we counted the number of
correct and incorrect expressions currently found in the
puzzle. Then for each combination of correct and incorrect
counts, we calculated the accuracy of each algorithm. Fig. 4
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Fig. 4. Heatmaps showing the accuracy of the algorithm for each

combination of correct and incorrect relations, where darker colors indicate
more correctness. Positions with no color and value indicate that the
dataset did not have an example of that combination of correct/incorrection
relations.

shows heatmaps based on these accuracies. Each combina-
tion containing 5 or more incorrect expressions happened
4 or fewer times across the dataset, so we draw limited
generalization from this small sample; they are displayed
only for completeness. In contrast, almost every combination
with 1 or fewer incorrect relations happened 6 to 29 times.

VI. DISCUSSION

Robot assistance often requires the robot to reason about
the task being performed by the user. The robot may use
knowledge it has about the task to infer what the user is
attempting to do, what they may do next, and how to help
them complete the task. We consider scenarios where the
child is a user, and the robot is expected to have greater
knowledge of the task than the user. Using Theory of Mind
(ToM), the robot should be able to distinguish between its
knowledge of the task and the child’s knowledge and use
any differences to help the child in completing the task. The
first step in this process is recognizing what the user is doing.
The paper provides two contributions: a new dataset with two
baseline performance evaluations, which assess how well a
robot using these approaches would recognize TomCAT.

A. Tangram Dataset

The ToMCAT dataset serves as a new ToM benchmark
for the HRI research community. This dataset captures 436
observations of 34 children being assisted by a socially
assistive robot while building a tangram puzzle. The dataset
addresses each of the three limitations from Sec. II.

1) Goal Complexity: If we view the puzzle solution as the
“goal”, then a goal in this task is a correct arrangement of the
pieces. Instead of a single expression defining each goal, both
the cat and rabbit have 8 relationships between pieces in a
correctly completed puzzle. Additionally, each goal can have
4 possible solutions, resulting in 8 arrangements of pieces
as possible goals. The complexity of each goal in sharp
contrast to much of the Al research on ToM that uses single-
expression, destination-oriented goals (e.g., at(truckl)).
Complex goals are likely with assistive robotics, where we
see goals like correctly assembling furniture [35], sorting
medications [36], or completing an exercise routine [37].

2) Plan Predictability and Legibility: The tangram task is
small but solving the puzzles can be complex. There are 7!
optimal plans for solving the puzzle, and an infinite number
of suboptimal plans. For the first step in the plan, there are
over 900 possibilities as a result of the many orientations
and positions a piece can have relative to another piece.
Given the many possibilities, many of the children made
several mistakes in the earlier stages of the task. Since
some children were able to solve the puzzle optimally, it
suggests that the complexity of the problem can be managed
through application of spatial and geometric reasoning to
create heuristics and constraints to guide the search through
this large problem space.

3) User Errors: The children in the ToMCAT dataset
often made mistakes, which presents new challenges in
determining what the child’s intentions were. When a piece
is misplaced, it may not be clear that the child made an error.
Instead, the child may simply be making a different puzzle.
For example, in the sixth observed state for one participant,
the child connected the two large triangles in a way that
it would correctly form the rabbit’s body. This could lead
the reasoner to believe that the child is building a rabbit.
However, the child was actually trying to build the cat, and
the connection between the triangles was made in error. In
almost every ToM dataset and evaluation we have found, it
is assumed that the observing agent knows what they are
doing, is making rational choices, and is capable of acting
as intended. However, in assistive robotics, one or more of
these may not be true, and the robot needs its ToM reasoning
to be robust to the ambiguities created by user errors.

B. Evaluation of Analogy and LLM on TomCAT benchmarks

To provide a baseline benchmark, we evaluated how well
analogical reasoning and one commercial LLM are able to
recognize which puzzle is being assembled by the child based
on a single observed state. As expected, there is consider-
able room for improvement for both approaches. A clear
opportunity for improvement would be using a sequence
of observations. This could be particularly effective when



the child made a mistake. For example, one child’s puzzle
had 6 correction relationships and no incorrect relationships
between the puzzle pieces, and then they started making
mistakes. Soon the puzzle had 3 correct and 1 incorrect
relationships, which caused the LLM to incorrectly recognize
the puzzle. After some more tinkering, the puzzle had 3
correct and 3 incorrect relationships, which caused both
models to incorrectly recognize the puzzle. Future work
should consider how to integrate these previous observations
into the reasoning process.

Even when there are no mistakes in the puzzle, there
is space for considerable improvements in how an LLM
reasons about this problem. A completed puzzle with 8
correct relations and O incorrect relations was accurately
recognized only 79% of the time. While this points to the
LLM not performing the task well, we note that this is off-
the-shelf performance. It is likely that fine-tuning and/or
advanced prompting techniques would improve the LLM’s
understanding of the task. However, the goal of the present
work was to set baseline benchmarks, rather than identify
the best algorithms for the task. We leave the latter as a
challenge to the community.

In general, we would expect a reasoner to more accurately
reason about the puzzle as it gets closer to completion.
Children in our dataset were nearly perfect in positioning
the final pieces of the puzzle once there were 6 correct
expressions. They are able to take correct actions at this
point because they can see how the arrangement of their
puzzle pieces resemble the picture of the puzzle. As a result,
we expect an Al reasoner to always recognize a completed
problem, and even puzzles that are nearly complete should
also be recognized with very high accuracy. We see this
behavior in the analogical inferences. When there are 5
or more correct expressions, analogy recognizes the puzzle
with perfect accuracy, regardless of how many incorrect
relations are present. Generally, we see the accuracy of
analogy consistently improve once there are at least 2 correct
expressions. Once there are 2 correct expressions, there are
larger structures that may be mapped, leading to greater
similarity.

C. Beyond Puzzle Recognition

The TomCAT dataset provides clear opportunities to inves-
tigate ToM reasoning beyond puzzle recognition. A common
mistake made by the children helps illustrate this. Multiple
children used the red medium triangle in place of either a
smaller or bigger triangle. In particular, some children when
building the cat puzzle would use the medium triangle as
one of its ears instead of small triangles for each of its ears
(see Fig. 2). This common confusion is likely caused by a
few factors, including the puzzle illustration being black and
white, making it unclear where the red triangle should go,
and one of the small triangles was initially hidden but the
cat clearly needed two triangles for its ears. When a child
uses a medium triangle in place of a small one, there is an
opportunity for the reasoner to compare which piece is used
to make the cat’s second ear (using its own knowledge) to

which piece the child has put in that position (which is an
indicator of the child’s beliefs). Along with knowing that a
medium triangle is incompatible with a small triangle, the
ToM reasoner would be able to infer that the child has a
false belief regarding how the medium triangle can be used.
Furthermore, puzzle recognition could be further facilitated
by using counterfactual reasoning in this case to replace
the medium triangle with one of the small triangles. If the
counterfactual case is a much better match to the puzzle
solution, then the change made for the counterfactual could
be the suggested change that the robot makes to the child.
Since the dataset includes many errors and most datasets
include little to no errors made by the observed agent,
our dataset is particularly well-suited for developing ToM
reasoning to recognize and recover from observed errors.

VII. LIMITATIONS

One limitation of the TOMCAT dataset at present is that
this paper evaluates two puzzles—rabbit or cat—resulting
in a binary classification task. In fact, one might argue that
it is primarily a visual recognition problem. However, pilot
experiments using Claude Sonnet 3.7 on video frames from
which puzzle states were extracted for the dataset yield
chance performance. There are two possible reasons for this:
(1) image quality is not sufficient for VLLMs to recognize
the puzzle or (2) the puzzle requires reasoning beyond pure
visual recognition. We believe it is a combination of the two,
but the exact balance will need to be empirically determined.

Each observation in ToMCAT is based on manually ex-
tracting puzzle relationships from the video. The data is
a clean and accurate representation of the actual puzzle
arrangements. Also, the logical representation is well suited
for analogical reasoning, which accounts for some of the
higher performance of that approach. However, we believe
that this representation can be computationally derived from
the video. The processing of the videos is not expected to be
perfect, resulting in noisy data. Given that our results here
show that analogy has a high level of accuracy when there are
incorrect relations (which can be viewed as similar to having
incorrect data) and prior research showing analogy being
robust to unreliable data [6], it is likely that analogy will
continue to accurately recognize the puzzle when operating
on data that is not manually constructed.

VIII. FUTURE WORK

The evaluations we presented here are intended to serve
as a baseline, and there are many opportunities to improve
upon these algorithms. One opportunity is for the algorithms
to consider previous observations instead of reasoning about
each observation independently. From a sequence of obser-
vations, which is more commonly used in ToM scenarios,
the reasoner may be able to identify patterns that would
make the intentions of the child more clear. Sequences of
observations would also facilitate predicting and evaluating
the next change that the child makes to the puzzle.

Future developments of this dataset will support further
ToM benchmarking. We are continuing to review the dataset



to label states for false beliefs the child has (e.g., the medium
triangle can be used in place of a small one). The videos
also capture the robot’s interventions, thus providing an
opportunity to link everything from recognizing the puzzle,
to evaluating the child’s action, to assessing any false beliefs,
to finally deciding what the robot will do to intervene.

IX. CONCLUSION

We present the TOMCAT benchmark to evaluate Theory of
Mind capabilities when reasoning about children’s goals in
tangram puzzles. The benchmark introduces key challenges
as a result of incorporating greater goal complexity, plans
with reduced predictability and legibility, and frequent user
errors. We provide baseline measurements, with analogy
performing perfectly on puzzles at least 50% complete.
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